Browse free open source Python Frameworks for Linux and projects below. Use the toggles on the left to filter open source Python Frameworks for Linux by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Papermerge

    Papermerge

    Open Source Document Management System for Digital Archives

    Papermerge is an open source document management system (DMS) primarily designed for archiving and retrieving your digital documents. Instead of having piles of paper documents all over your desk, office or drawers - you can quickly scan them and configure your scanner to directly upload to Papermerge DMS. Store, organize and index scanned documents in PDF, JPEG and TIFF formats. Instantly find relevant information using full text, tags and metadata-based search. Papermerge is free and open-source software which means that transparency is the core value of our software development. Source code can be reviewed and improved by anyone from anywhere. Papermerge supports multiple users. Each user can be assigned different permissions to perform only a specific kind of action e.g. view only documents from a specific folder. OCR technology is vital part of Papermerge. It extracts text information from scanned documents, PDF, JPEG, TIFF files.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 2
    Ultroid

    Ultroid

    Telegram UserBot, Built in Python Using Telethon lib

    Ultroid, a pluggable telegram userbot, made in python using Telethon! Ultroid has been written from scratch, making it more stable and less crashes. Ultroid warns you when you try to install/execute dangerous stuff (people nowadays make plugins to hack user accounts, Ultroid is safe). Unlike many others userbots that are being suspended by Heroku, Ultroid doesn't get suspended. Ultroid has been written from scratch, making it more stable and less of crashes. Error handling been done in the best way possible, such that the bot doesn't crash and stop all of a sudden. Ultroid has minimal amount of plugins (just the necessary ones) in the main repository, and all the other less-useful stuff in the addons repository. This facilitates quick deployments and lag-free use. Ultroid can install any plugin from the most of the other 'userbots' without any issue.
    Downloads: 26 This Week
    Last Update:
    See Project
  • 3
    NoneBot

    NoneBot

    Asynchronous multi-platform robot framework written in Python

    Use NB-CLI to quickly build your own robot. Plug-in development, modular management. Supports multiple platforms and multiple incident response methods. Asynchronous priority development to improve operational efficiency. Simple and clear dependency injection system, built-in dependency functions reduce user code. NoneBot2 is a modern, cross-platform, and extensible Python chatbot framework. It is based on Python's type annotations and asynchronous features, and can provide convenient and flexible support for your needs. NoneBot2 is written based on Python asyncio , and has a certain degree of synchronous function compatibility based on the asynchronous mechanism. NoneBot2 provides an easy-to-use, interactive command-line tool -- nb-cli, making it easier to get started with NoneBot2 for the first time. The plug-in system is the core of NoneBot2, through which the modularization and function expansion of the robot can be realized, which is convenient for maintenance and management.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 4
    AI Chatbot Framework

    AI Chatbot Framework

    Python chatbot framework with Natural Language Understanding

    Building a chatbot can sound daunting, but it’s totally doable. AI Chatbot Framework is an AI powered conversational dialog interface built in Python. With this tool, it’s easy to create Natural Language conversational scenarios with no coding efforts whatsoever. The smooth UI makes it effortless to create and train conversations to the bot and it continuously gets smarter as it learns from conversations it has with people. AI Chatbot Framework can live on any channel of your choice (such as Messenger, Slack etc.) by integrating it’s API with that platform. You don’t need to be an expert at artificial intelligence to create an awesome chatbot that has AI capabilities. With this boilerplate project you can create an AI-powered chatting machine in no time.
    Downloads: 10 This Week
    Last Update:
    See Project
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 5
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    PokemonGo-Bot

    PokemonGo-Bot

    The Pokemon Go Bot, baking with community

    PokemonGo-Bot is a project created by the PokemonGoF team. Since no public API available for now, a patch to use HASH-Server was applied. PokemonGoF is not part of HASH-Server dev team and has no connection with it. Based on Python for botting on any operating system - Windows, macOS and Linux. Multi-bot supported. Able to edit bot if certain level has reached. Allow custom hash service provider, if any. GPS Location configuration. Search & spin Pokestops / Gyms. Diverse options for humanlike behavior from movement to overall game play. Ability to add multiple coordinates to select between your favorite botting locations. Support self defined path / route. Advanced catch, evolve and transfer confuration using our PokemonOptimizer settings. Determine which pokeball to use. Rules to determine the use of Razz and Pinap Berries. Exchange, evolve and catch Pokemon base on pre-configured rules. Transfer Pokemon in bulk. Auto switch mode.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths. In order for a human to have a meaningful exchange with a contextual assistant, the assistant needs to be able to use context to build on things that were previously discussed. Rasa enables you to build assistants that can do this in a scalable way. Rasa uses Poetry for packaging and dependency management. If you want to build it from the source, you have to install Poetry first. By default, Poetry will try to use the currently activated Python version to create the virtual environment for the current project automatically.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems. Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Pyrogram

    Pyrogram

    Elegant, modern and asynchronous Telegram MTProto API framework

    Pyrogram is a modern, elegant and asynchronous MTProto API framework. It enables you to easily interact with the main Telegram API through a user account (custom client) or a bot identity (bot API alternative) using Python. Ready: Install Pyrogram with pip and start building your applications right away. Easy: Makes the Telegram API simple and intuitive, while still allowing advanced usages. Elegant: Low-level details are abstracted and re-presented in a more convenient way. Fast: Boosted up by TgCrypto, a high-performance cryptography library written in C. Type-hinted: Types and methods are all type-hinted, enabling excellent editor support. Async: Fully asynchronous (also usable synchronously if wanted, for convenience). Powerful: Full access to Telegram's API to execute any official client action and more.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve. Start scaling your model training with just a few lines of Python code. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. Printing those variables shows they have the same shape and dtype.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models. In total, 17 benchmark datasets are used for comparison, which can be downloaded at ODDS.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    For quite some time now, we know about the benefits of transfer learning in Computer Vision (CV) applications. Nowadays, pre-trained Deep Convolution Neural Networks (DCNNs) are the first go-to pre-solutions to learn a new task. These large models are trained on huge supervised corpora, like the ImageNet. And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the models’ pre-trained weights, append a new classifier layer on top of it, and retrain the network. This is called transfer learning, and is one of the most used techniques in CV. Aside from a few tricks when performing fine-tuning (if the case), it has been shown (many times) that if training for a new task, models initialized with pre-trained weights tend to learn faster and be more accurate then training from scratch using random initialization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt. The core concept of the system is visual, and the name of the interface corresponds to it one-to-one, so it is also uniform and extensible. You can write and run the strategy in your favorite ide, and then view its related targets, factor, signal and performance on the UI. Once you are familiar with the core concepts of the system, you can apply it to any target in the market.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22

    Pytente

    Uma Ferramenta Computacional para Análise e Recuperação de Patentes

    O Pytente é uma solução avançada para automatizar o processo de coleta, armazenamento e tratamento de dados bibliográficos de patentes. A ferramenta foi projetada para simplificar a coleta de grandes volumes de dados em repositórios de acesso aberto. O Pytente garante o armazenamento estruturado das informações, além da validação e eliminação de registros duplicados. Dentre as diversas funcionalidades disponibilizadas pela ferramenta, destacam-se a extração personalizada de subconjuntos de dados e a possibilidade de realizar buscas semânticas no conjunto de dados armazenados, sem a necessidade de elaborar expressões lógicas de busca.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new video frames and Pipeless takes care of everything else. You can easily use industry-standard models, such as YOLO, or load your custom model in one of the supported inference runtimes. Pipeless ships some of the most popular inference runtimes, such as the ONNX Runtime, allowing you to run inference with high performance on CPU or GPU out-of-the-box. You can deploy your Pipeless application with a single command to edge and IoT devices or the cloud.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Using this plugin-based framework, you can instantly start working on the *brain* of your bot (irc bot, chatterbot, robot, ...). With support for db, irc, logging and programming-language independent plugins, users can easily enhance the functionality.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next