Open Source BSD Large Language Models (LLM)

Large Language Models (LLM) for BSD

Browse free open source Large Language Models (LLM) and projects for BSD below. Use the toggles on the left to filter open source Large Language Models (LLM) by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for immediate responses. They are released under the MIT license, allowing commercial use and secondary development. GLM-4.5 achieves strong performance on 12 industry-standard benchmarks, ranking 3rd overall, while GLM-4.5-Air balances competitive results with greater efficiency. The models support FP8 and BF16 precision, and can handle very large context windows of up to 128K tokens. Flexible inference is supported through frameworks like vLLM and SGLang with tool-call and reasoning parsers included.
    Downloads: 300 This Week
    Last Update:
    See Project
  • 2
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 128 This Week
    Last Update:
    See Project
  • 3
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 79 This Week
    Last Update:
    See Project
  • 4
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 68 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 37 This Week
    Last Update:
    See Project
  • 6
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 36 This Week
    Last Update:
    See Project
  • 7
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 8
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage (~50%) while maintaining precision. High benchmarking performance on tasks like MMLU, MATH, CMMLU, C-Eval, etc.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 9
    ChatGLM-6B

    ChatGLM-6B

    ChatGLM-6B: An Open Bilingual Dialogue Language Model

    ChatGLM-6B is an open bilingual (Chinese + English) conversational language model based on the GLM architecture, with approximately 6.2 billion parameters. The project provides inference code, demos (command line, web, API), quantization support for lower memory deployment, and tools for finetuning (e.g., via P-Tuning v2). It is optimized for dialogue and question answering with a balance between performance and deployability in consumer hardware settings. Support for quantized inference (INT4, INT8) to reduce GPU memory requirements. Automatic mode switching between precision/memory tradeoffs (full/quantized).
    Downloads: 6 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    LLM CLI

    LLM CLI

    Access large language models from the command-line

    A CLI utility and Python library for interacting with Large Language Models, both via remote APIs and models that can be installed and run on your own machine.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    CSGHub

    CSGHub

    CSGHub is a brand-new open-source platform for managing LLMs

    CSGHub is an open-source framework designed for collaborative scientific research and content generation. It enables researchers to utilize AI-driven tools for literature review, hypothesis generation, and automated writing assistance, streamlining the scientific discovery process.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    CodeLlama

    CodeLlama

    Inference code for CodeLlama models

    Code Llama is a family of Llama-based code models optimized for programming tasks such as code generation, completion, and repair, with variants specialized for base coding, Python, and instruction following. The repo documents the sizes and capabilities (e.g., 7B, 13B, 34B) and highlights features like infilling and large input context to support real IDE workflows. It targets both general software synthesis and language-specific productivity, offering strong performance among open models at release time. Typical usage includes prompt-driven generation, function or class completion, and zero-shot adherence to natural-language instructions about code changes. The ecosystem provides multiple distributions (e.g., HF format) so developers can integrate with standard toolchains and serving stacks. As part of the broader Llama effort, Code Llama complements instruction-tuned chat models by focusing on code-centric tasks and editor integrations.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Granite 3.0 Language Models

    Granite 3.0 Language Models

    New set of lightweight state-of-the-art, open foundation models

    This repository introduces Granite 3.0 language models as lightweight, state-of-the-art open foundation models built to natively support multilinguality, coding, reasoning, and tool usage. A central goal is efficient deployment, including the potential to run on constrained compute resources while remaining useful for a broad span of enterprise tasks. The repo positions the models for both research and commercial use under an Apache-2.0 license, signaling permissive adoption paths. Documentation highlights the capability mix (reasoning, tool use, code) and points to model artifacts and guidance for evaluation. Activity on the project shows an evolving codebase with open pull requests and standard GitHub project structure for issues and security visibility. In practice, this is a hub for acquiring Granite 3.0 variants and understanding how to integrate them into applications.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Evals

    Evals

    Evals is a framework for evaluating LLMs and LLM systems

    The openai/evals repository is a framework and registry for evaluating large language models and systems built with LLMs. It’s designed to let you define “evals” (evaluation tasks) in a structured way and run them against different models or agents, with the ability to score, compare, and analyze results. The framework supports templated YAML eval definitions, solver-based evaluations, custom metrics, and composition of multi-step evaluations. It includes utilities and APIs to plug in completion functions, manage prompts, wrap retries or error handling, and register new evaluation types. It also maintains a growing registry of standard benchmarks or “evals” that users can reuse (for example, tasks measuring reasoning, factual accuracy, or chain-of-thought capabilities). The design is modular so you can extend or compose new evals, integrate with your own model APIs, and capture rich metadata about each run (prompt, responses, metrics).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we recommend Mesh Transformer JAX. If you are not looking to train models with billions of parameters from scratch, this is likely the wrong library to use. For generic inference needs, we recommend you use the Hugging Face transformers library instead which supports GPT-NeoX models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    LLaMA Models

    LLaMA Models

    Utilities intended for use with Llama models

    This repository serves as the central hub for the Llama foundation model family, consolidating model cards, licenses and use policies, and utilities that support inference and fine-tuning across releases. It ties together other stack components (like safety tooling and developer SDKs) and provides canonical references for model variants and their intended usage. The project’s issues and releases reflect an actively used coordination point for the ecosystem, where guidance, utilities, and compatibility notes are published. It complements separate repos that carry code and demos (for example inference kernels or cookbook content) by keeping authoritative metadata and specs here. Model lineages and size variants are documented externally (e.g., Llama 3.x and beyond), with this repo providing the “single source of truth” links and utilities. In practice, teams use llama-models as a reference when selecting variants, aligning licenses, and wiring in helper scripts for deployment.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when the context is too big. Offers you a comprehensive toolset, trading off cost and performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Megatron

    Megatron

    Ongoing research training transformer models at scale

    Megatron is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor, sequence, and pipeline), and multi-node pre-training of transformer based models such as GPT, BERT, and T5 using mixed precision. Megatron is also used in NeMo Megatron, a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters. Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Purple Llama

    Purple Llama

    Set of tools to assess and improve LLM security

    Purple Llama is an umbrella safety initiative that aggregates tools, benchmarks, and mitigations to help developers build responsibly with open generative AI. Its scope spans input and output safeguards, cybersecurity-focused evaluations, and reference shields that can be inserted at inference time. The project evolves as a hub for safety research artifacts like Llama Guard and Code Shield, along with dataset specs and how-to guides for integrating checks into applications. CyberSecEval, one of its flagship components, provides repeatable evaluations for security risk, including agent-oriented tasks such as automated patching benchmarks. The aim is to make safety practical: ship testable baselines, publish metrics, and provide drop-in implementations that reduce friction for teams adopting Llama. Documentation and sites attached to the repo walk through setup, usage, and the rationale behind each safeguard, encouraging community contributions.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model inference, making your pipeline execution 10x faster. Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    Following Instructions with Feedback

    Following Instructions with Feedback

    Training Language Models to Follow Instructions with Human Feedback

    The following-instructions-human-feedback repository contains the code and supplementary materials underpinning OpenAI’s work in training language models (InstructGPT models) that better follow user instructions through human feedback. The repo hosts the model card, sample automatic evaluation outputs, and labeling guidelines used in the process. It is explicitly tied to the “Training language models to follow instructions with human feedback” paper, and serves as a reference for how OpenAI collects annotation guidelines, runs preference comparisons, and evaluates model behaviors. The repository is not a full implementation of the entire RLHF pipeline, but rather an archival hub supporting the published research—providing transparency around evaluation and human labeling standards. It includes directories such as automatic-eval-samples (samples of model outputs on benchmark tasks) and a model-card.md that describes the InstructGPT models’ intended behavior, limitations, and biases.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    LLaMA 3

    LLaMA 3

    The official Meta Llama 3 GitHub site

    This repository is the former home for Llama 3 model artifacts and getting-started code, covering pre-trained and instruction-tuned variants across multiple parameter sizes. It introduced the public packaging of weights, licenses, and quickstart examples that helped developers fine-tune or run the models locally and on common serving stacks. As the Llama stack evolved, Meta consolidated repositories and marked this one deprecated, pointing users to newer, centralized hubs for models, utilities, and docs. Even as a deprecated repo, it documents the transition path and preserves references that clarify how Llama 3 releases map into the current ecosystem. Practically, it functioned as a bridge between Llama 2 and later Llama releases by standardizing distribution and starter code for inference and fine-tuning. Teams still treat it as historical reference material for version lineage and migration notes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    MGIE

    MGIE

    Guiding Instruction-based Image Editing via Multimodal Large Language

    MGIE—Guiding Instruction-based Image Editing—demonstrates how a multimodal LLM can parse natural-language editing instructions and then drive image transformations accordingly. The project focuses on making edits explainable and controllable: the model interprets text guidance, reasons over image content, and outputs edits aligned with user intent. It’s positioned as an ICLR 2024 Spotlight work, with code and references that show how to connect language planning to concrete image operations. This bridges a gap between free-form prompts and precise edits by letting users describe “what” and “where” in everyday language. The repo includes instructions, examples, and links that situate MGIE within Apple’s broader line of multimodal research. For practitioners, MGIE provides a blueprint for text-to-edit systems that are more semantically grounded than naive prompt-only pipelines.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo presents the vision-language pipeline, model assets, and paper resources that show how Ferret answers questions, follows instructions, and returns grounded outputs rather than just text. In practice, this enables tasks like “find that small red icon next to the chart and describe it” where both the linguistic reference and the visual region are ambiguous without fine spatial reasoning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.