Swift Machine Learning Software

View 440 business solutions

Browse free open source Swift Machine Learning Software and projects below. Use the toggles on the left to filter open source Swift Machine Learning Software by OS, license, language, programming language, and project status.

  • Auth for GenAI | Auth0 Icon
    Auth for GenAI | Auth0

    Enable AI agents to securely access tools, workflows, and data with fine-grained control and just a few lines of code.

    Easily implement secure login experiences for AI Agents - from interactive chatbots to background workers with Auth0. Auth for GenAI is now available in Developer Preview
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    Bender

    Bender

    Easily craft fast Neural Networks on iOS

    Bender allows you to easily define and run neural networks on your iOS apps, it uses Apple’s MetalPerformanceShaders under the hood. Bender provides the ease of use of CoreML with the flexibility of a modern ML framework. Bender allows you to run trained models, you can use Tensorflow, Keras, Caffe, the choice is yours. Either freeze the graph or export the weights to files. You can import a frozen graph directly from supported platforms or re-define the network structure and load the weights. Either way, it just takes a few minutes. Bender suports the most common ML nodes and layers but it is also extensible so you can write your own custom functions. With Core ML, you can integrate trained machine learning models into your app, it supports Caffe and Keras 1.2.2+ at the moment. Apple released conversion tools to create CoreML models which then can be run easily. Finally, there is no easy way to add additional pre or post-processing layers to run on the GPU.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NSFWDetector

    NSFWDetector

    A NSFW detector with CoreML

    NSFWDetector is a small (17 kB) CoreML Model to scan images for nudity. It was trained using CreateML to distinguish between porn/nudity and appropriate pictures. With the main focus on distinguishing between Instagram model-like pictures and porn.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    LlamaChat

    LlamaChat

    Chat with your favourite LLaMA models in a native macOS app

    Chat with your favourite LLaMA models, right on your Mac. LlamaChat is a macOS app that allows you to chat with LLaMA, Alpaca, and GPT4All models all running locally on your Mac.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Swift AI

    Swift AI

    The Swift machine learning library

    Swift AI is a high-performance deep learning library written entirely in Swift. We currently offer support for all Apple platforms, with Linux support coming soon. Swift AI includes a collection of common tools used for artificial intelligence and scientific applications. A flexible, fully-connected neural network with support for deep learning. Optimized specifically for Apple hardware, using advanced parallel processing techniques. We've created some example projects to demonstrate the usage of Swift AI. Each resides in their own repository and can be built with little or no configuration. Each module now contains its own documentation. We recommend that you read the docs carefully for detailed instructions on using the various components of Swift AI. The example projects are another great resource for seeing real-world usage of these tools. Swift AI currently depends on Apple's Accelerate framework for vector/matrix calculations and digital signal processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.