Open Source C# Natural Language Processing (NLP) Tools for Linux

C# Natural Language Processing (NLP) Tools for Linux

View 26 business solutions

Browse free open source C# Natural Language Processing (NLP) Tools for Linux and projects below. Use the toggles on the left to filter open source C# Natural Language Processing (NLP) Tools for Linux by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    CRFSharp

    CRFSharp

    CRFSharp is a .NET(C#) implementation of Conditional Random Field

    CRFSharp(aka CRF#) is a .NET(C#) implementation of Conditional Random Fields, an machine learning algorithm for learning from labeled sequences of examples. It is widely used in Natural Language Process (NLP) tasks, for example: word breaker, postagging, named entity recognized, query chunking and so on. CRF#'s mainly algorithm is the same as CRF++ written by Taku Kudo. It encodes model parameters by L-BFGS. Moreover, it has many significant improvement than CRF++, such as totally parallel encoding, optimizing memory usage and so on. Currently, when training corpus, compared with CRF++, CRF# can make full use of multi-core CPUs and only uses very low memory, and memory grow is very smoothly and slowly while amount of training corpus, tags increase. with multi-threads process, CRF# is more suitable for large data and tags training than CRF++ now. For example, in machine with 64GB, CRF# encodes model with more than 4.5 hundred million features quickly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.