Neural Network Libraries for Linux

View 10 business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Neural - is neural network engine with object-oriented design. Features: - Supports: backpropogation, RPROP algorithms. - Flexible input/outputs framework. - Distributed calculations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Neural Mesh
    Neural Mesh is a purely PHP, fast, easy Neural Network Manager, Administrator and Framework. It allows you to integrate Artificial Intelligence into your applications, quickly and easily, no matter what your experience.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Easy to use neural network library in C++, to build networks with arbitrary (acyclic) topologies, both regular and recurrent (for data structures).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    It's an object-oriented library written in C++ for creating arbitrary kind of neural networks. The user can use the classes provided to create neural network with arbitrary topology and mixed type of neurons. It's very easy add custom neurons.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    NNFpp (Neural Network Framework plus plus) is a C++ porting of the NNF library. The library is a complete and portable C++ class with specified functions for using neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Neural Network class library: Its a C/C++ implementation that provides following three neural architecture - Feed-forward network, Radial Basis function network, multi-layer perceptron and Self-Organizing Maps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    nn-utility is a neural network library for C++ and Java. Its aim is to simplify the tedious programming of neural networks, while allowing programmers to have maximum flexibility in terms of defining functions and network topology.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit. With a single specification, you can compute NNGP and NTK kernels, perform exact GP inference, and study training dynamics analytically for infinitely wide networks. The library closely mirrors JAX’s stax API while extending it to return a kernel_fn alongside init_fn and apply_fn, enabling drop-in workflows for kernel computation. Kernel evaluation is highly optimized for speed and memory, and computations can be automatically distributed across accelerators with near-linear scaling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    NeuralJ is a free, open-source neural network library for Java applications. It is the purpose of this project to make the easiest, most flexible and reliable, neural network platform available.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Connect every part of your business to one bank account Icon
    Connect every part of your business to one bank account

    North One is a business banking app that integrates cash flow, payments, and budgeting to turn your North One Account into one Connected Bank Account

    North One is proudly built for small businesses, startups and freelancers across America. Make payments easily, keep tabs on your money and put your finances on autopilot through smart integrations with the tools you’re already using. North One was built to make managing money easy so you can focus on running your business. No more branches. No more lines. No more paperwork. Get complete access to your North One Account from your phone or computer, wherever your business takes you. Create Envelopes for taxes, payroll, rent, and anything else automatically.
    Get started for free.
  • 10
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source, modular API for differential privacy research. Everyone is welcome to contribute. ML practitioners will find this to be a gentle introduction to training a model with differential privacy as it requires minimal code changes. Differential Privacy researchers will find this easy to experiment and tinker with, allowing them to focus on what matters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OpenAIL

    OpenAIL

    Open Artificial Intelligence Library

    [Open Artificial Intelligence Library]. This library main goal is to provide a tool box to those who want to use algorithm such as neural network or genetics Algorithm and all algorithms that are commonly within the Artificial Intelligence field.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PHPNN Is an open source, GPL licensed, PHP class library for the easy creation and manipulation of Neural Network based artificial intelligence. This library is intended for use in experimentation, games, quality control, or any other purpose.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    PINNLib

    Pseudo-inverse associative neural networks library

    C++ implementation of high-performance associative neural networks models based on pseudo-inverse learning rule, also known as projection rule or attractor-based rule
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained inspection and modification after training. Its modular design includes tools for tree manipulation, named axes, and declarative neural network construction. The library integrates tightly with Treescope, an advanced pretty-printer for visualizing deeply nested JAX pytrees and NDArray structures. Penzai’s penzai.nn module provides a compositional, combinator-based API for building neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PrettyTensor

    PrettyTensor

    Pretty Tensor: Fluent Networks in TensorFlow

    Pretty Tensor is a high-level API built on top of TensorFlow that simplifies the process of creating and managing deep learning models. It wraps TensorFlow tensors in a chainable object syntax, allowing developers to build multi-layer neural networks with concise and readable code. Pretty Tensor preserves full compatibility with TensorFlow’s core functionality while providing syntactic sugar for defining complex architectures such as convolutional and recurrent networks. The library’s design emphasizes flexibility and modularity, supporting advanced features like default scopes, parameter templates, and variable reuse. It also allows easy integration with custom operations and third-party libraries, making it ideal for both research experimentation and production-grade modeling. By combining TensorFlow’s power with an intuitive builder-style API, Pretty Tensor accelerates model development without sacrificing transparency or control.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested under GPU and python3. But in theory there shouldn't be too many problems on python2 and CPU. The basic part (the first five chapters) explains the content of PyTorch. This part introduces the main modules in PyTorch and some tools commonly used in deep learning. For this part of the content, Jupyter Notebook is used as a teaching tool here, and readers can modify and run with notebooks and repeat experiments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    PyTorch-NLP is a library for Natural Language Processing (NLP) in Python. It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    A neural net module written in python. The aim of the project is to provide a large set of neural network types accessed by an API that is easy to use and powerful.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    RNNLIB is a recurrent neural network library for sequence learning problems. Applicable to most types of spatiotemporal data, it has proven particularly effective for speech and handwriting recognition. full installation and usage instructions given at http://sourceforge.net/p/rnnl/wiki/Home/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ResNeXt

    ResNeXt

    Implementation of a classification framework

    ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    RooCARDS is a set of C++ classes written for the ROOT analysis framework which interface ROOT to the Stuttgart Neural Network Simulator (SNNS). This interface is based on a concept originally developed by Professor Yibin Pan at the UW-Madison.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Neural Network calculation & learning library
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    SINCO - A Neural Network Library

    A Neural Network Library in C++ to implement multilayer perceptrons.

    SINCO is a GPL library with functions to implement Artificial Neural Networks simulators. You are free to define the network (ilimited neurons and layers) and the functions (training, threshold, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    A parallel-programming framework for concurrently running large numbers of small autonomous jobs, or microthreads, across multiple cores in a CPU or CPUs in a cluster. Each microthread is conceptually similar to a task in Ada and it is much lighter weight than an operating system thread. SpikeOS was designed to handle millions of microthreads, for example in a neural network hosting millions of spiking model neurons. SpikeOS handles microthread scheduling, synchronization, distribution and communication. *** This project has been forked. NeuraNEP (sourceforge.net/projects/neuranep) represents a major update to SpikeOS. It has the same core functionality plus several enhancements, including a scripting interface. NeuraNEP is engineering-oriented, as opposed to simulation-oriented, and some features/capabilities have changed.
    Downloads: 0 This Week
    Last Update:
    See Project