Showing 37 open source projects for "deep learning with python"

View related business solutions
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 1
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    ...If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Ray

    Ray

    A unified framework for scalable computing

    ...Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 5
    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization

    Physical Symbolic Optimization (Φ-SO) - A symbolic optimization package built for physics. Symbolic regression module uses deep reinforcement learning to infer analytical physical laws that fit data points, searching in the space of functional forms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    Train and embed intelligent agents by leveraging state-of-the-art deep learning technology. Creating responsive and intelligent virtual players and non-playable game characters is hard. Especially when the game is complex. To create intelligent behaviors, developers have had to resort to writing tons of code or using highly specialized tools. With Unity Machine Learning Agents (ML-Agents), you are no longer “coding” emergent behaviors, but rather teaching intelligent agents to “learn” through a combination of deep reinforcement learning and imitation learning. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    ViZDoom

    ViZDoom

    Doom-based AI research platform for reinforcement learning

    ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular. ViZDoom is based on ZDOOM, the most popular modern source-port of DOOM. This means compatibility with a huge range of tools and resources that can be used to create custom scenarios, availability of detailed documentation of the engine and tools and support of Doom community. Async and sync single-player and multi-player modes. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Alibi Explain

    Alibi Explain

    Algorithms for explaining machine learning models

    Alibi is a Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Accounts Payable Software | AvidXchange Icon
    Accounts Payable Software | AvidXchange

    AvidXchange is an Industry Leader in AP Automation Software for Middle Market Businesses.

    Drive greater business success by automating the accounts payable process to boost efficiency, accuracy and speed in the processing of invoices and payments.
    Learn More
  • 10
    TorchRL

    TorchRL

    A modular, primitive-first, python-first PyTorch library

    TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. TorchRL provides PyTorch and python-first, low and high-level abstractions for RL that are intended to be efficient, modular, documented, and properly tested. The code is aimed at supporting research in RL. Most of it is written in Python in a highly modular way, such that researchers can easily swap components, transform them, or write new ones with little effort.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    OpenRLHF

    OpenRLHF

    An Easy-to-use, Scalable and High-performance RLHF Framework

    OpenRLHF is an easy-to-use, scalable, and high-performance framework for Reinforcement Learning with Human Feedback (RLHF). It supports various training techniques and model architectures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    OpenSpiel

    OpenSpiel

    Environments and algorithms for research in general reinforcement

    ...OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. Games are represented as procedural extensive-form games, with some natural extensions. The core API and games are implemented in C++ and exposed to Python. Algorithms and tools are written both in C++ and Python. To try OpenSpiel in Google Colaboratory, please refer to open_spiel/colabs subdirectory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    This is the official C++ source code repository of the Bullet Physics SDK: real-time collision detection and multi-physics simulation for VR, games, visual effects, robotics, machine learning etc. We are developing a new differentiable simulator for robotics learning, called Tiny Differentiable Simulator, or TDS. The simulator allows for hybrid simulation with neural networks. It allows different automatic differentiation backends, for forward and reverse mode gradients. TDS can be trained using Deep Reinforcement Learning, or using Gradient based optimization (for example LFBGS). ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 19
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    ...It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 35 This Week
    Last Update:
    See Project
  • 21
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    ...For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Trax

    Trax

    Deep learning with clear code and speed

    ...Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It is also actively used for research and includes new models like the Reformer and new RL algorithms like AWR. Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor and TensorFlow datasets. You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Pwnagotchi

    Pwnagotchi

    Deep Reinforcement learning instrumenting bettercap for WiFi pwning

    Pwnagotchi is an A2C-based “AI” powered by bettercap and running on a Raspberry Pi Zero W that learns from its surrounding WiFi environment in order to maximize the crackable WPA key material it captures (either through passive sniffing or by performing deauthentication and association attacks). This material is collected on disk as PCAP files containing any form of handshake supported by hashcat, including full and half WPA handshakes as well as PMKIDs. Instead of merely playing Super Mario...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    ...The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. Using deep learning models like CNN and RNN with financial and alternative data, and how to generate synthetic data with Generative Adversarial Networks, as well as training a trading agent using deep reinforcement learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next