Showing 7 open source projects for "framework-arduinoststm32"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs.
    Downloads: 38 This Week
    Last Update:
    See Project
  • 2
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. ...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 3
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    KotlinDL

    KotlinDL

    High-level Deep Learning Framework written in Kotlin

    KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. Under the hood, it uses TensorFlow Java API and ONNX Runtime API for Java. KotlinDL offers simple APIs for training deep learning models from scratch, importing existing Keras and ONNX models for inference, and leveraging transfer learning for tailoring existing pre-trained models to your tasks. This project aims to make Deep Learning easier for JVM and Android developers and simplify deploying deep learning...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    Mobile AI Compute Engine (or MACE for short) is a deep learning inference framework optimized for mobile heterogeneous computing on Android, iOS, Linux and Windows devices. Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations. The initialization is also optimized to be faster. Chip-dependent power options like big.LITTLE scheduling, Adreno GPU hints are included as advanced APIs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    ...On the mobile phone, TNN has been used by many applications such as mobile QQ, weishi, and Pitu. As a basic acceleration framework for Tencent Cloud AI, TNN has provided acceleration support for the implementation of many businesses. Everyone is welcome to participate in the collaborative construction to promote the further improvement of the TNN inference framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    ...E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. During the model conversion, we generate some code snippets to simplify later retraining or inference. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next