Showing 244 open source projects for "deep learning with python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    FATE

    FATE

    An industrial grade federated learning framework

    ..., deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    ... assistants development. It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. DeepPavlov Agent allows building industrial solutions with multi-skill integration via API services.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Matplotlib

    Matplotlib

    matplotlib: plotting with Python

    Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard things possible. Matplotlib ships with several add-on toolkits, including 3D plotting with mplot3d, axes helpers in axes_grid1 and axis helpers in axisartist. A large number of third party packages extend and build on Matplotlib functionality, including several higher-level plotting interfaces (seaborn, HoloViews, ggplot
    Downloads: 15 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    ... software systems without the risk of exposure that comes with data disclosure. Underneath the hood it uses several probabilistic graphical modeling and deep learning based techniques. To enable a variety of data storage structures, we employ unique hierarchical generative modeling and recursive sampling techniques.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths. In order for a human to have a meaningful exchange...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder. When the model is trained, we need to divide the training set...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Recommenders 2023

    Recommenders 2023

    Best Practices on Recommendation Systems

    Recommenders objective is to assist researchers, developers and enthusiasts in prototyping, experimenting with and bringing to production a range of classic and state-of-the-art recommendation systems. Recommenders is a project under the Linux Foundation of AI and Data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    DeepXDE is a library for scientific machine learning and physics-informed learning. DeepXDE includes the following algorithms. Physics-informed neural network (PINN). Solving different problems. Solving forward/inverse ordinary/partial differential equations (ODEs/PDEs) [SIAM Rev.] Solving forward/inverse integro-differential equations (IDEs) [SIAM Rev.] fPINN: solving forward/inverse fractional PDEs (fPDEs) [SIAM J. Sci. Comput.] NN-arbitrary polynomial chaos (NN-aPC): solving forward/inverse...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    ... neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. With Kornia we fill the gap between classical and deep computer vision that implements standard and advanced vision algorithms for AI. Our libraries and initiatives are always according to the community needs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    spacy-transformers

    spacy-transformers

    Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

    spaCy supports a number of transfer and multi-task learning workflows that can often help improve your pipeline’s efficiency or accuracy. Transfer learning refers to techniques such as word vector tables and language model pretraining. These techniques can be used to import knowledge from raw text into your pipeline, so that your models are able to generalize better from your annotated examples. You can convert word vectors from popular tools like FastText and Gensim, or you can load in any pre...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that lets...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    MuJoCo Playground

    MuJoCo Playground

    An open source library for GPU-accelerated robot learning

    MuJoCo Playground, developed by Google DeepMind, is a GPU-accelerated suite of simulation environments for robot learning and sim-to-real research, built on top of MuJoCo MJX. It unifies a range of control, locomotion, and manipulation tasks into a consistent and scalable framework optimized for JAX and Warp backends. The project includes classic control benchmarks from dm_control, advanced quadruped and bipedal locomotion systems, and dexterous as well as non-prehensile manipulation setups...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Ariadne

    Ariadne

    Python library for implementing GraphQL servers

    Ariadne is a Python library for implementing GraphQL servers. Schema-first. Ariadne enables Python developers to use a schema-first approach to the API implementation. This is the leading approach used by the GraphQL community and supported by dozens of frontend and backend developer tools, examples, and learning resources. Ariadne makes all of this immediately available to you and other members of your team. Ariadne offers a small, consistent, and easy to memorize API that lets developers...
    Downloads: 4 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.