Showing 244 open source projects for "deep learning with python"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Ariadne

    Ariadne

    Python library for implementing GraphQL servers

    Ariadne is a Python library for implementing GraphQL servers. Schema-first. Ariadne enables Python developers to use a schema-first approach to the API implementation. This is the leading approach used by the GraphQL community and supported by dozens of frontend and backend developer tools, examples, and learning resources. Ariadne makes all of this immediately available to you and other members of your team. Ariadne offers a small, consistent, and easy to memorize API that lets developers...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    xhtml2pdf

    xhtml2pdf

    A library for converting HTML into PDFs using ReportLab

    xhtml2pdf enables users to generate PDF documents from HTML content easily and with automated flow control such as pagination and keeping text together. The Python module can be used in any Python environment, including Django. The Command line tool is a stand-alone program that can be executed from the command line.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 5
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    cheat.sh

    cheat.sh

    The only cheat sheet you need

    ... to run a local standalone instance (including Python virtualenv setup), and tooling to fetch or maintain the upstream cheat-sheet data; installation documentation explains disk-space needs and dependency setup for offline use. Cheat.sh is intentionally minimal and scriptable, so it fits naturally into shells, CI scripts, editors, and quick lookups without leaving the terminal, while also offering ways to extend or host personal cheat sheets.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    OpenManus

    OpenManus

    No fortress, purely open ground. OpenManus is Coming

    OpenManus is an open‑agent AI framework focused on building versatile general-purpose agents capable of autonomously executing complex workflows — such as planning, browsing, tool invocation — all via a pluggable prompts and tools interface. It's being extended with reinforcement learning‑based tuning modules and designed for researchers and developers building custom AI agents.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    TorchQuantum

    TorchQuantum

    A PyTorch-based framework for Quantum Classical Simulation

    A PyTorch-based framework for Quantum Classical Simulation, Quantum Machine Learning, Quantum Neural Networks, Parameterized Quantum Circuits with support for easy deployments on real quantum computers. Researchers on quantum algorithm design, parameterized quantum circuit training, quantum optimal control, quantum machine learning, and quantum neural networks. Dynamic computation graph, automatic gradient computation, fast GPU support, batch model terrorized processing.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major CL...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    System Design Primer

    System Design Primer

    Learn how to design large-scale systems

    ... questions with sample solutions, diagrams, and code. The repository also contains study guides for short, medium, and long interview timelines, allowing learners to focus on both breadth and depth depending on their preparation needs. In addition, it includes flashcard decks designed to reinforce learning through spaced repetition, making it easier to retain key system design knowledge.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Optuna

    Optuna

    A hyperparameter optimization framework

    Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. Optuna Dashboard is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Google CTF

    Google CTF

    Google CTF

    Google CTF is the public repository that houses most of the challenges from Google’s Capture-the-Flag competitions since 2017 and the infrastructure used to run them. It’s a learning and practice archive: competitors and educators can replay tasks across categories like pwn, reversing, crypto, web, sandboxing, and forensics. The code and binaries intentionally contain vulnerabilities—by design—so users can explore exploit chains and patching in realistic settings. The repo also includes...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used across...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    BayesianOptimization

    BayesianOptimization

    A Python implementation of global optimization with gaussian processes

    BayesianOptimization is a Python library that helps find the maximum (or minimum) of expensive or unknown objective functions using Bayesian optimization. This technique is especially useful for hyperparameter tuning in machine learning, where evaluating the objective function is costly. The library provides an easy-to-use API for defining bounds and optimizing over parameter spaces using probabilistic models like Gaussian Processes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid pace...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Luigi

    Luigi

    Python module that helps you build complex pipelines of batch jobs

    ... jobs, dumping data to/from databases, running machine learning algorithms, or anything else. You can build pretty much any task you want, but Luigi also comes with a toolbox of several common task templates that you use. It includes support for running Python mapreduce jobs in Hadoop, as well as Hive, and Pig, jobs. It also comes with file system abstractions for HDFS, and local files that ensures all file system operations are atomic.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Public APIs

    Public APIs

    A collective list of free APIs

    public-apis is a collaboratively maintained repository that provides an extensive, categorized list of publicly available APIs for developers. Curated by community contributors and the team at APILayer, it serves as a centralized resource for discovering APIs across a wide range of domains, including data, machine learning, weather, entertainment, and finance. The project aims to make API exploration and integration more accessible by offering a single, organized index of open and free-to-use...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Helium

    Helium

    Lighter web automation with Python

    Helium is a Python library built on top of Selenium to make browser automation more intuitive and human-friendly. It replaces verbose boilerplate code with natural language-like API calls such as click("Login") or write("hello", into="Name"). Helium manages browser setup, waits, and teardown, enabling quick development of scripts for testing, scraping, or task automation without requiring deep Selenium knowledge.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    HelloGitHub

    HelloGitHub

    Share interesting, entry-level open source projects on GitHub

    HelloGitHub shares interesting, entry-level open source projects on GitHub. It is updated and released in the form of a monthly magazine on the 28th of every month. The content includes interesting, entry-level open-source projects, open-source books, practical projects, enterprise-level projects, etc., so that you can feel the charm of open source in a short time and fall in love with open source! At first, I just wanted to collect interesting, high-quality, and easy-to-use projects that I...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    PyTorch Lightning

    PyTorch Lightning

    The lightweight PyTorch wrapper for high-performance AI research

    .... When you need to scale up things like BERT and self-supervised learning, Lightning responds accordingly by automatically exporting to ONNX or TorchScript. PyTorch Lightning can easily be applied for any use case. With just a quick refactor you can run your code on any hardware, run distributed training, perform logging, metrics, visualization and so much more!
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy...
    Downloads: 1 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.