Showing 6 open source projects for "framework-arduinoststm32"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    golem

    golem

    A Framework for Building Robust Shiny Apps

    golem is an opinionated framework for developing production-grade Shiny applications in R, treating the app like a full R package. It scaffolds project structure, testing, documentation, CI/CD, and supports containerization—streamlining the build-to-deploy pipeline while enforcing clean architecture and maintainability.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Statistical Rethinking 2024

    Statistical Rethinking 2024

    This course teaches data analysis

    .... This version is designed for students following the 2024 lecture series, offering the most current set of examples, exercises, and teaching material aligned with the Statistical Rethinking framework. Online, flipped instruction. I will pre-record the lectures each week. We'll meet online once a week for an hour to discuss the material. The discussion time (3-4pm Berlin Time) should allow people in the Americas to join in their morning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Shiny

    Shiny

    Build interactive web apps directly from R with Shiny framework

    Shiny is an R package from RStudio that enables users to build interactive web applications using R without requiring knowledge of JavaScript, HTML, or CSS. It allows statisticians and data scientists to turn their analyses into fully functional web dashboards with reactive elements, data inputs, visualizations, and controls, making data communication more effective and dynamic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    ... Agent Host is built specifically for LangChain, a framework dedicated to developing applications powered by language models. LangChain recognizes that the most powerful and distinctive applications go beyond simply utilizing a language model and strive to be data-aware and agentic. Being data-aware involves connecting a language model to other sources of data, enabling a comprehensive understanding and analysis of information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5

    Scripting Language Bindings

    A port of WFOPT to the several scripting languages

    This project contains bindings for various scripting languages to the Wheefun Options Parsing Library. It is meant to provide parity with the C implementation so .NET languages can take advantage of WFOPT. For more information, please see the main page.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    benchm-ml

    benchm-ml

    A minimal benchmark for scalability, speed and accuracy of commonly us

    This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.