Showing 11 open source projects for "framework-arduinoststm32"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    Acl

    Acl

    A powerful server and network library, including coroutine

    The Acl (Advanced C/C++ Library) project a is powerful multi-platform network communication library and service framework, supporting LINUX, WIN32, Solaris, FreeBSD, MacOS, AndroidOS, iOS. Many applications written by Acl run on these devices with Linux, Windows, iPhone and Android and serve billions of users. There are some important modules in Acl project, including network communcation, server framework, application protocols, multiple coders, etc. The common protocols such as HTTP/SMTP/ICMP...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Pathway

    Pathway

    Python ETL framework for stream processing, real-time analytics, LLM

    Pathway is an open-source framework designed for building real-time data applications using reactive and declarative paradigms. It enables seamless integration of live data streams and structured data into analytical pipelines with minimal latency. Pathway is especially well-suited for scenarios like financial analytics, IoT, fraud detection, and logistics, where high-velocity and continuously changing data is the norm. Unlike traditional batch processing frameworks, Pathway continuously...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Lithops

    Lithops

    A multi-cloud framework for big data analytics

    Lithops is an open-source serverless computing framework that enables transparent execution of Python functions across multiple cloud providers and on-prem infrastructure. It abstracts cloud providers like IBM Cloud, AWS, Azure, and Google Cloud into a unified interface and turns your Python functions into scalable, event-driven workloads. Lithops is ideal for data processing, ML inference, and embarrassingly parallel workloads, giving you the power of FaaS (Function-as-a-Service) without...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    CocoIndex

    CocoIndex

    ETL framework to index data for AI, such as RAG

    CocoIndex is an open-source framework designed for building powerful, local-first semantic search systems. It lets users index and retrieve content based on meaning rather than keywords, making it ideal for modern AI-based search applications. CocoIndex leverages vector embeddings and integrates with various models and frameworks, including OpenAI and Hugging Face, to provide high-quality semantic understanding. It’s built for transparency, ease of use, and local control over your search data...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    ... processing workloads on Amazon SageMaker using the Apache Spark framework. The container images in this repository are used to build the pre-built container images that are used when running Spark jobs on Amazon SageMaker using the SageMaker Python SDK. The pre-built images are available in the Amazon Elastic Container Registry (Amazon ECR), and this repository serves as a reference for those wishing to build their own customized Spark containers for use in Amazon SageMaker.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework that simplifies event and stream processing. Because Bytewax couples the stream and event processing capabilities of Flink, Spark, and Kafka Streams with the friendly and familiar interface of Python, you can re-use the Python libraries you already know and love. Connect data sources, run stateful transformations, and write to various downstream systems with built-in connectors or existing Python libraries. Bytewax is a Python framework and Rust distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Fondant

    Fondant

    Production-ready data processing made easy and shareable

    Fondant is a modular, pipeline-based framework designed to simplify the preparation of large-scale datasets for training machine learning models, especially foundation models. It offers an end-to-end system for ingesting raw data, applying transformations, filtering, and formatting outputs—all while remaining scalable and traceable. Fondant is designed with reproducibility in mind and supports containerized steps using Docker, making it easy to share and reuse data processing components. It’s...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Pyper

    Pyper

    Concurrent Python made simple

    Pyper is a Python-native orchestration and scheduling framework designed for modern data workflows, machine learning pipelines, and any task that benefits from a lightweight DAG-based execution engine. Unlike heavier platforms like Airflow, Pyper aims to remain lean, modular, and developer-friendly, embracing Pythonic conventions and minimizing boilerplate. It focuses on local development ergonomics and seamless transition to production environments, making it ideal for small teams...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Amadeus

    Amadeus

    Harmonious distributed data analysis in Rust

    Amadeus is a high-performance, distributed data processing framework written in Rust, designed to offer an ergonomic and safe alternative to tools like Apache Spark. It provides both streaming and batch capabilities, allowing users to work with real-time and historical data at scale. Thanks to Rust’s memory safety and zero-cost abstractions, Amadeus delivers performance gains while reducing the complexity and bugs common in large-scale data pipelines. It emphasizes developer productivity...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    DSPatch

    DSPatch

    The Refreshingly Simple C++ Dataflow Framework

    Webite: http://flowbasedprogramming.com DSPatch, pronounced "dispatch", is a powerful C++ dataflow framework. DSPatch is not limited to any particular domain or data type, from reactive programming to stream processing, DSPatch's generic, object-oriented API allows you to create virtually any dataflow system imaginable. *See also:* DSPatcher ( https://github.com/MarcusTomlinson/DSPatcher ): A cross-platform graphical tool for building DSPatch circuits. DSPatchables ( https...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Wally

    Wally

    Distributed Stream Processing

    Wally is a fast-stream-processing framework. Wally makes it easy to react to data in real-time. By eliminating infrastructure complexity, going from prototype to production has never been simpler. When we set out to build Wally, we had several high-level goals in mind. Create a dependable and resilient distributed computing framework. Take care of the complexities of distributed computing "plumbing," allowing developers to focus on their business logic. Provide high-performance & low-latency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.