As a general data structure with strong expressive ability, graphs can be used to describe many problems in the real world, such as user networks in social scenarios, user and commodity networks in e-commerce scenarios, communication networks in telecom scenarios, and transaction networks in financial scenarios. and drug molecule networks in medical scenarios, etc. Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
Features
- Distributed Learning for Large Scale Graphs
- The combination of graph learning and deep learning
- Supports the representation of complex heterogeneous graphs
- Support neighbors and nodes to filter by attributes
- Hierarchical abstraction and flexible extension
- Distributed graph engine