Libagf is a machine learning library that includes adaptive kernel density estimators using Gaussian kernels and k-nearest neighbours. Operations include statistical classification, interpolation/non-linear regression and pdf estimation. For statistical classification there is a borders training feature for creating fast and general pre-trained models that nonetheless return the conditional probabilities. Libagf also includes clustering algorithms as well as comparison and validation routines. It is written in C++.

Project Samples

Project Activity

See All Activity >

License

GNU General Public License version 2.0 (GPLv2)

Follow Adaptive Gaussian Filtering

Adaptive Gaussian Filtering Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

Build gen AI apps with an all-in-one modern database: MongoDB Atlas

MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Adaptive Gaussian Filtering!

Additional Project Details

Intended Audience

Advanced End Users, Developers, Information Technology, Non-Profit Organizations, Science/Research

User Interface

Command-line, Other toolkit

Programming Language

C++

Database Environment

Flat-file, Proprietary file format

Related Categories

C++ Information Analysis Software, C++ Machine Learning Software, C++ Statistics Software

Registered

2007-10-18