We present a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data with large size.

Features

  • big data
  • Random Bits
  • neural network
  • boosting
  • random forest
  • machine learning
  • data mining
  • prediction

Project Activity

See All Activity >

Follow Random Bits Forest

Random Bits Forest Web Site

Other Useful Business Software
MongoDB Atlas runs apps anywhere Icon
MongoDB Atlas runs apps anywhere

Deploy in 115+ regions with the modern database for every enterprise.

MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Random Bits Forest!

Additional Project Details

Languages

English

Programming Language

C, C++

Related Categories

C++ Neural Network Libraries, C++ Big Data Tool, C Neural Network Libraries, C Big Data Tool

Registered

2015-10-10