Best Streaming Analytics Platforms

Compare the Top Streaming Analytics Platforms as of July 2025

What are Streaming Analytics Platforms?

Streaming analytics platforms are software solutions that enable real-time processing and analysis of data as it is generated or streamed from various sources such as IoT devices, sensors, social media, and transactional systems. These platforms allow businesses to gain immediate insights from continuous data streams, enabling them to make faster decisions, detect anomalies, and optimize operations in real-time. Key features of streaming analytics platforms include data ingestion, real-time event processing, pattern recognition, and advanced analytics like predictive modeling and machine learning integration. They are commonly used in applications such as fraud detection, customer behavior analysis, network monitoring, and supply chain optimization. Compare and read user reviews of the best Streaming Analytics platforms currently available using the table below. This list is updated regularly.

  • 1
    IBM StreamSets
    IBM® StreamSets enables users to create and manage smart streaming data pipelines through an intuitive graphical interface, facilitating seamless data integration across hybrid and multicloud environments. This is why leading global companies rely on IBM StreamSets to support millions of data pipelines for modern analytics, intelligent applications and hybrid integration. Decrease data staleness and enable real-time data at scale—handling millions of records of data, across thousands of pipelines within seconds. Insulate data pipelines from change and unexpected shifts with drag-and-drop, prebuilt processors designed to automatically identify and adapt to data drift. Create streaming pipelines to ingest structured, semistructured or unstructured data and deliver it to a wide range of destinations.
    Starting Price: $1000 per month
  • 2
    PubSub+ Platform
    Solace PubSub+ Platform helps enterprises design, deploy and manage event-driven systems across hybrid and multi-cloud and IoT environments so they can be more event-driven and operate in real-time. The PubSub+ Platform includes the powerful PubSub+ Event Brokers, event management capabilities with PubSub+ Event Portal, as well as monitoring and integration capabilities all available via a single cloud console. PubSub+ allows easy creation of an event mesh, an interconnected network of event brokers, allowing for seamless and dynamic data movement across highly distributed network environments. PubSub+ Event Brokers can be deployed as fully managed cloud services, self-managed software in private cloud or on-premises environments, or as turnkey hardware appliances for unparalleled performance and low TCO. PubSub+ Event Portal is a complimentary toolset for design and governance of event-driven systems including both Solace and Kafka-based event broker environments.
  • 3
    SQLstream

    SQLstream

    Guavus, a Thales company

    SQLstream ranks #1 for IoT stream processing & analytics (ABI Research). Used by Verizon, Walmart, Cisco, & Amazon, our technology powers applications across data centers, the cloud, & the edge. Thanks to sub-ms latency, SQLstream enables live dashboards, time-critical alerts, & real-time action. Smart cities can optimize traffic light timing or reroute ambulances & fire trucks. Security systems can shut down hackers & fraudsters right away. AI / ML models, trained by streaming sensor data, can predict equipment failures. With lightning performance, up to 13M rows / sec / CPU core, companies have drastically reduced their footprint & cost. Our efficient, in-memory processing permits operations at the edge that are otherwise impossible. Acquire, prepare, analyze, & act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code GUI dev environment. Export SQL scripts & deploy with the flexibility of Kubernetes.
  • 4
    GigaSpaces

    GigaSpaces

    GigaSpaces

    Smart DIH is an operational data hub that powers real-time modern applications. It unleashes the power of customers’ data by transforming data silos into assets, turning organizations into data-driven enterprises. Smart DIH consolidates data from multiple heterogeneous systems into a highly performant data layer. Low code tools empower data professionals to deliver data microservices in hours, shortening developing cycles and ensuring data consistency across all digital channels. XAP Skyline is a cloud-native, in memory data grid (IMDG) and developer framework designed for mission critical, cloud-native apps. XAP Skyline delivers maximal throughput, microsecond latency and scale, while maintaining transactional consistency. It provides extreme performance, significantly reducing data access time, which is crucial for real-time decisioning, and transactional applications. XAP Skyline is used in financial services, retail, and other industries where speed and scalability are critical.
  • 5
    Kinetica

    Kinetica

    Kinetica

    A scalable cloud database for real-time analysis on large and streaming datasets. Kinetica is designed to harness modern vectorized processors to be orders of magnitude faster and more efficient for real-time spatial and temporal workloads. Track and gain intelligence from billions of moving objects in real-time. Vectorization unlocks new levels of performance for analytics on spatial and time series data at scale. Ingest and query at the same time to act on real-time events. Kinetica's lockless architecture and distributed ingestion ensures data is available to query as soon as it lands. Vectorized processing enables you to do more with less. More power allows for simpler data structures, which lead to lower storage costs, more flexibility and less time engineering your data. Vectorized processing opens the door to amazingly fast analytics and detailed visualization of moving objects at scale.
  • 6
    Cumulocity IoT

    Cumulocity IoT

    Software AG

    Cumulocity IoT is the #1 low-code, self-service IoT platform—the only one that comes pre-integrated with the tools you need for fast results: device connectivity and management, application enablement and integration, as well as streaming and predictive analytics. Free your business from proprietary technology stacks. Because you’ll be using the only completely open IoT platform, you can connect any “thing” today and tomorrow. Bring your own hardware and tools, and pick the components that best fit. Get up and running on the IoT in minutes. Connect a device and view its data. Create a real-time interactive dashboard. Define rules to monitor and act on events. Do all of this without calling on IT or writing any code! Easily integrate new IoT data with the core enterprise systems, applications and processes that have run your business for years—again, without coding—for a fluid flow of data. You’ll have more context to make better decisions.
  • 7
    Esper Enterprise Edition
    Esper Enterprise Edition is a distributable platform for linear and elastic horizontal scalability and fault-tolerant event processing. EPL editor and debugger; Hot deployment; Detailed metric and memory use reporting with break-down and summary per EPL. Data Push for multi-tier CEP-to-Browser delivery; Management of Logical and Physical Subscribers and Subscriptions. Web-based user interface for managing all aspects of multiple distributed engine instances with JavaScript and HTML 5. Composable, configurable and interactive displays of distributed event streams or series; Charts, Gauges, Timelines, Grids. JDBC-compliant client and server endpoints for interoperability. Esper Enterprise Edition is a closed-source commercial product by EsperTech. The source code is made available to support customers only. Esper Enterprise Edition is a distributable platform for linear and elastic horizontal scalability and fault-tolerant event processing.
  • 8
    Evam Continuous Intelligence Platform
    Evam's Continuous Intelligence Platform combines multiple products for processing and visualizing real-time data. It runs real-time machine learning models on streaming data, while enriching the real-time data with a smart in-memory caching mechanism. EVAM empowers telecommunications, financial services, retail, transportation and travel companies to maximize their business value. Through continuous intelligence platform with machine learning capabilities. EVAM processes real-time data and designs and orchestrates customer journeys visually with advanced analytical models, machine learning, and artificial intelligence algorithms. EVAM enables enterprises to engage their customers using their data across all channels, including legacy ones, in real-time. Collect billions of events and process them in real-time. Understand each customer's needs and attract, engage, and retain them more effectively.
  • 9
    Oracle Stream Analytics
    Oracle Stream Analytics allows users to process and analyze large scale real-time information by using sophisticated correlation patterns, enrichment, and machine learning. It offers real-time actionable business insight on streaming data and automates action to drive today’s agile businesses. Visual GEOProcessing with GEOFence relationship spatial analytics. New Expressive Patterns Library, including Spatial, Statistical, General industry and Anomaly detection, streaming machine learning. Abstracted visual façade to interrogate live real time streaming data and perform intuitive in-memory real time business analytics.
  • 10
    Hitachi Streaming Data Platform
    ​The Hitachi Streaming Data Platform (SDP) is a real-time data processing system designed to analyze large volumes of time-sequenced data as it is generated. By leveraging in-memory and incremental computational processing, SDP enables swift analysis without the delays associated with traditional stored data processing. Users can define summary analysis scenarios using Continuous Query Language (CQL), similar to SQL, allowing for flexible and programmable data analysis without the need for custom applications. The platform's architecture comprises components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, facilitating scalable and efficient data processing workflows. SDP's modular design supports various data input and output formats, including text files and HTTP packets, and integrates with visualization tools like RTView for real-time monitoring.
  • 11
    Cloudera DataFlow
    Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi ​​that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes.
  • Previous
  • You're on page 1
  • Next