Best Streaming Analytics Platforms

Compare the Top Streaming Analytics Platforms as of October 2025

What are Streaming Analytics Platforms?

Streaming analytics platforms are software solutions that enable real-time processing and analysis of data as it is generated or streamed from various sources such as IoT devices, sensors, social media, and transactional systems. These platforms allow businesses to gain immediate insights from continuous data streams, enabling them to make faster decisions, detect anomalies, and optimize operations in real-time. Key features of streaming analytics platforms include data ingestion, real-time event processing, pattern recognition, and advanced analytics like predictive modeling and machine learning integration. They are commonly used in applications such as fraud detection, customer behavior analysis, network monitoring, and supply chain optimization. Compare and read user reviews of the best Streaming Analytics platforms currently available using the table below. This list is updated regularly.

  • 1
    IBM StreamSets
    IBM® StreamSets enables users to create and manage smart streaming data pipelines through an intuitive graphical interface, facilitating seamless data integration across hybrid and multicloud environments. This is why leading global companies rely on IBM StreamSets to support millions of data pipelines for modern analytics, intelligent applications and hybrid integration. Decrease data staleness and enable real-time data at scale—handling millions of records of data, across thousands of pipelines within seconds. Insulate data pipelines from change and unexpected shifts with drag-and-drop, prebuilt processors designed to automatically identify and adapt to data drift. Create streaming pipelines to ingest structured, semistructured or unstructured data and deliver it to a wide range of destinations.
    Starting Price: $1000 per month
  • 2
    Azure Event Hubs
    Event Hubs is a fully managed, real-time data ingestion service that’s simple, trusted, and scalable. Stream millions of events per second from any source to build dynamic data pipelines and immediately respond to business challenges. Keep processing data during emergencies using the geo-disaster recovery and geo-replication features. Integrate seamlessly with other Azure services to unlock valuable insights. Allow existing Apache Kafka clients and applications to talk to Event Hubs without any code changes—you get a managed Kafka experience without having to manage your own clusters. Experience real-time data ingestion and microbatching on the same stream. Focus on drawing insights from your data instead of managing infrastructure. Build real-time big data pipelines and respond to business challenges right away.
    Starting Price: $0.03 per hour
  • 3
    Google Cloud Dataflow
    Unified stream and batch data processing that's serverless, fast, and cost-effective. Fully managed data processing service. Automated provisioning and management of processing resources. Horizontal autoscaling of worker resources to maximize resource utilization. OSS community-driven innovation with Apache Beam SDK. Reliable and consistent exactly-once processing. Streaming data analytics with speed. Dataflow enables fast, simplified streaming data pipeline development with lower data latency. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Dataflow automates provisioning and management of processing resources to minimize latency and maximize utilization.
  • Previous
  • You're on page 1
  • Next