
Electronic Edition
This file is part of the electronic edition of The Unicode Standard, Version 5.0, provided for online
access, content searching, and accessibility. It may not be printed. Bookmarks linking to specific
chapters or sections of the whole Unicode Standard are available at

http://www.unicode.org/versions/Unicode5.0.0/bookmarks.html

Purchasing the Book
For convenient access to the full text of the standard as a useful reference book, we recommend pur-
chasing the printed version. The book is available from the Unicode Consortium, the publisher, and
booksellers. Purchase of the standard in book format contributes to the ongoing work of the Uni-
code Consortium. Details about the book publication and ordering information may be found at

http://www.unicode.org/book/aboutbook.html

Joining Unicode
You or your organization may benefit by joining the Unicode Consortium: for more information, see
Joining the Unicode Consortium at

http://www.unicode.org/consortium/join.html

This PDF file is an excerpt from The Unicode Standard, Version 5.0, issued by the Unicode Consortiu-
mand published by Addison-Wesley. The material has been modified slightly for this electronic edi-
ton, however, the PDF files have not been modified to reflect the corrections found on the Updates
and Errata page (http://www.unicode.org/errata/). For information on more recent versions of the
standard, see http://www.unicode.org/versions/enumeratedversions.html.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The Unicode® Consortium is a registered trademark, and Unicode™ is a trademark of Unicode, Inc.
The Unicode logo is a trademark of Unicode, Inc., and may be registered in some jurisdictions.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided. Dai Kan-Wa Jiten, used as the
source of reference Kanji codes, was written by Tetsuji Morohashi and published by Taishukan Shoten.

Cover and CD-ROM label design: Steve Mehallo, www.mehallo.com

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact U.S. Corporate and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com.
For sales outside the United States please contact International Sales, international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

The Unicode Standard / the Unicode Consortium ; edited by Julie D. Allen ... [et al.]. — Version 5.0.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-48091-0 (hardcover : alk. paper)
 1. Unicode (Computer character set) I. Allen, Julie D.
 II. Unicode Consortium.
 QA268.U545 2007
 005.7'22—dc22

 2006023526

Copyright © 1991–2007 Unicode, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to Pearson Edu-
cation, Inc., Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston, MA 02116.
Fax: (617) 848-7047

ISBN 0-321-48091-0
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2006

Chapter 3

Conformance 3

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section defines the format for referencing the
Unicode Standard and Unicode properties. The second section consists of the conformance
clauses, followed by sections that define more precisely the technical terms used in those
clauses. The remaining sections contain the formal algorithms that are part of conform-
ance and referenced by the conformance clause. Additional definitions and algorithms that
are part of this standard can be found in the Unicode Standard Annexes listed at the end of
Section 3.2, Conformance Requirements.

In this chapter, conformance clauses are identified with the letter C. Definitions are identi-
fied with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

The numbering of clauses and definitions has been changed from that of prior versions of
The Unicode Standard. This change was necessitated by the addition of a substantial num-
ber of new definitions that did not fit well into the prior numbering scheme. A cross-refer-
ence table enabling the matching of a clause or definition between Version 5.0 and earlier
versions of the standard is available in Section D.3, Clause and Definition Numbering
Changes.

For information on implementing best practices, see Chapter 5, Implementation Guidelines.

3.1 Versions of the Unicode Standard
For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire creates a new repertoire, which will be treated either as an update of the

existing character encoding or as a completely new character encoding.

For the Unicode Standard, by contrast, the repertoire is inherently open. Because Unicode
is a universal encoding, any abstract character that could ever be encoded is a potential can-
didate to be encoded, regardless of whether the character is currently known.

Each new version of the Unicode Standard supersedes the previous one, but implementa-
tions—and, more significantly, data—are not updated instantly. In general, major and
minor version changes include new characters, which do not create particular problems

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

66 Conformance

with old data. The Unicode Technical Committee will neither remove nor move characters.
Characters may be deprecated, but this does not remove them from the standard or from
existing data. The code point for a deprecated character will never be reassigned to a differ-
ent character, but the use of a deprecated character is strongly discouraged. Generally these
rules make the encoded characters of a new version backward-compatible with previous
versions.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
standard, recognizing that new characters may be assigned in those versions. Thus they
should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to the Unicode Character Database and a new
update version is issued for the standard. Changes to the data files may alter program
behavior that depends on them. However, such changes to properties and to data files are
never made lightly. They are made only after careful deliberation by the Unicode Technical
Committee has determined that there is an error, inconsistency, or other serious problem
in the property assignments.

Stability

Each version of the Unicode Standard, once published, is absolutely stable and will never
change. Implementations or specifications that refer to a specific version of the Unicode
Standard can rely upon this stability. When implementations or specifications are
upgraded to a future version of the Unicode Standard, then changes to them may be neces-
sary. Note that even errata and corrigenda do not formally change the text of a published
version; see “Errata and Corrigenda” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions. These
include the names and code positions of characters, their decompositions, and several
other character properties for which stability is important to implementations. See also
“Stability of Properties” in Section 3.5, Properties. The formal statement of such stability
guarantees is contained in the policies on character encoding stability found on the Uni-
code Web site. See the subsection “Policies” in Section B.6, Other Unicode Online Resources.
Appendix F, Unicode Encoding Stability Policies, presents a copy of these policies in effect at
the time of this publication. See also the discussion of backward compatibility in Unicode

Standard Annex #31, “Identifier and Pattern Syntax,” and the subsection “Interacting with
Downlevel Systems” in Section 5.3, Unknown and Missing Characters.

Version Numbering

Version numbers for the Unicode Standard consist of three fields, denoting the major ver-
sion, the minor version, and the update version, respectively. For example, “Unicode 3.1.1”
indicates major version 3 of the Unicode Standard, minor version 1 of Unicode 3, and
update version 1 of minor version Unicode 3.1.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.1 Versions of the Unicode Standard 67

Formally, each new version of the Unicode Standard supersedes all earlier versions. How-
ever, because of the differences in the ways major, minor, and update versions are docu-
mented, minor and update versions generally do not obsolete all of the documentation of
the immediately prior versions of the standard.

Additional information on the current and past versions of the Unicode Standard can be
found on the Unicode Web site. See the subsection “Versions” in Section B.6, Other Unicode
Online Resources. The online document contains the precise list of contributing files from
the Unicode Character Database and the Unicode Standard Annexes, which are formally
part of each version of the Unicode Standard.

The differences between major, minor, and update versions are as follows:

Major Version. A major version represents significant additions to the standard, including
but not limited to major additions to the repertoire of encoded characters. A major version
is published as a book, together with associated updates to Unicode Standard Annexes and
the Unicode Character Database.

A major version consolidates all errata and corrigenda to data. The publication of the book for
a major version supersedes any prior documentation for major, minor, and update versions.

Minor Version. A minor version also represents significant additions to the standard. It
may include small or large additions to the repertoire of encoded characters or other signif-
icant normative changes. A minor version is published only online and is not published as
a book. Prior to Unicode 4.1, a minor version was published as a Unicode Standard Annex
(or as a Unicode Technical Report for the very earliest minor versions). Starting with Uni-
code 4.1, minor versions are published as stable version pages online. A minor version is
also associated with an update to the Unicode Character Database and updates to the
UAXes.

A minor version incorporates selected errata as appropriate. The documentation for a minor
version does not stand alone, but rather amends the documentation of the prior version.

Update Version. An update version represents relatively small changes to the standard,
focusing on updates to the data files of the Unicode Character Database. An update version
never involves any additions to character repertoire. It is published only online. Starting
with Unicode 3.0.1, update versions are published as stable version pages online. Prior to
that version, update versions were simply documented with the list of relevant data file
changes to the Unicode Character Database.

An update version incorporates selected errata, primarily for the data files. The documen-

tation for an update version does not stand alone, but rather amends the prior version.

Errata and Corrigenda

From time to time it may be necessary to publish errata or corrigenda to the Unicode Stan-
dard. Such errata and corrigenda will be published on the Unicode Web site. See
Section B.6, Other Unicode Online Resources, for information on how to report errors in the
standard.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

68 Conformance

Errata. Errata correct errors in the text or other informative material, such as the represen-
tative glyphs in the code charts. See the subsection “Updates and Errata” in Section B.6,
Other Unicode Online Resources. Whenever a new major version of the standard is pub-
lished, all errata up to that point are incorporated into the text.

Corrigenda. Occasionally errors may be important enough that a corrigendum is issued
prior to the next version of the Unicode Standard. Such a corrigendum does not change the
contents of the previous version. Instead, it provides a mechanism for an implementation,
protocol, or other standard to cite the previous version of the Unicode Standard with the
corrigendum applied. If a citation does not specifically mention the corrigendum, the cor-
rigendum does not apply. For more information on citing corrigenda, see “Versions” in
Section B.6, Other Unicode Online Resources.

References to the Unicode Standard

The documents associated with the major, minor, and update versions are called the major
reference, minor reference, and update reference, respectively. For example, consider Uni-
code Version 3.1.1. The major reference for that version is The Unicode Standard, Version
3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard Annex #27, “The Uni-
code Standard, Version 3.1.” The update reference is Unicode Version 3.1.1. The exact list of
contributory files, Unicode Standard Annexes, and Unicode Character Database files can
be found at Enumerated Version 3.1.1.

The reference for this version, Version 5.0.0, of the Unicode Standard, is

The Unicode Consortium. The Unicode Standard, Version 5.0.0, defined
by: The Unicode Standard, Version 5.0 (Boston, MA: Addison-Wesley,
2007. ISBN 0-321-48091-0)

References to an update or minor version include a reference to both the major version and
the documents modifying it. For the standard citation format for other versions of the Uni-
code Standard, see “Versions” in Section B.6, Other Unicode Online Resources.

Precision in Version Citation

Because Unicode has an open repertoire with relatively frequent updates, it is important
not to over-specify the version number. Wherever the precise behavior of all Unicode char-
acters needs to be cited, the full three-field version number should be used, as in the first
example below. However, trailing zeros are often omitted, as in the second example. In such

a case, writing 3.1 is in all respects equivalent to writing 3.1.0.

1. The Unicode Standard, Version 3.1.1

2. The Unicode Standard, Version 3.1

3. The Unicode Standard, Version 3.0 or later

4. The Unicode Standard

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.1 Versions of the Unicode Standard 69

Where some basic level of content is all that is important, phrasing such as in the third
example can be used. Where the important information is simply the overall architecture
and semantics of the Unicode Standard, the version can be omitted entirely, as in example 4.

References to Unicode Character Properties

Properties and property values have defined names and abbreviations, such as

Property: General_Category (gc)

Property Value: Uppercase_Letter (Lu)

To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category prop-
erty, as specified in Version 5.0.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is provided
for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit the
underscores in these aliases or to replace them by spaces.

When referencing a Unicode character property, it is customary to prepend the word “Uni-
code” to the name of the property, unless it is clear from context that the Unicode Standard
is the source of the specification.

References to Unicode Algorithms

A reference to a Unicode algorithm must specify the name of the algorithm or its abbrevia-
tion, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 4.1.0 of the
Unicode Standard.

See Unicode Standard Annex #9, “The Bidirectional Algorithm,”
(http://www.unicode.org/reports/tr9/tr9-15.html)

Where algorithms allow tailoring, the reference must state whether any such tailorings were
applied or are applicable. For algorithms contained in a Unicode Standard Annex, the doc-
ument itself and its location on the Unicode Web site may be cited as the location of the
specification.
When referencing a Unicode algorithm it is customary to prepend the word “Unicode” to
the name of the algorithm, unless it is clear from the context that the Unicode Standard is
the source of the specification.

Omitting a version number when referencing a Unicode algorithm may be appropriate
when such a reference is meant as a generic reference to the overall algorithm. Such a
generic reference may also be employed in the sense of latest available version of the algo-
rithm. However, for specific and detailed conformance claims for Unicode algorithms,

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

70 Conformance

generic references are generally not sufficient, and a full version number must accompany
the reference.

3.2 Conformance Requirements
This section presents the clauses specifying the formal conformance requirements for pro-
cesses implementing Version 5.0 of the Unicode Standard. A few of these clauses have been
revised from Version 4.0 of the Unicode Standard. The revisions do not change the funda-
mental substance of the conformance requirements previously set forth, but rather are
reformulated to clarify their applicability to Unicode algorithms and tailoring. The defini-
tions that these clauses—particularly conformance clause C4—depend on have been
extended to cover additional aspects of properties and algorithms.

In addition to the specifications printed in this book, the Unicode Standard, Version 5.0,
includes a number of Unicode Standard Annexes (UAXes) and the Unicode Character
Database. Both are available only electronically, either on the CD-ROM or on the Unicode
Web site. At the end of this section there is a list of those annexes that are considered an
integral part of the Unicode Standard, Version 5.0.0, and therefore covered by these con-
formance requirements.

The Unicode Character Database contains an extensive specification of normative and
informative character properties completing the formal definition of the Unicode Stan-
dard. See Chapter 4, Character Properties, for more information.

Not all conformance requirements are relevant to all implementations at all times because
implementations may not support the particular characters or operations for which a given
conformance requirement may be relevant. See Section 2.14, Conforming to the Unicode
Standard, for more information.

In this section, conformance clauses are identified with the letter C.

The numbering of clauses has been changed from that of prior versions of The Unicode
Standard. A cross-reference table enabling the matching of a clause between Version 5.0
and earlier versions of the standard is available in Section D.3, Clause and Definition Num-
bering Changes.

Code Points Unassigned to Abstract Characters
C1 A process shall not interpret a high-surrogate code point or a low-surrogate code point
as an abstract character.

• The high-surrogate and low-surrogate code points are designated for surrogate
code units in the UTF-16 character encoding form. They are unassigned to any
abstract character.

C2 A process shall not interpret a noncharacter code point as an abstract character.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.2 Conformance Requirements 71

• The noncharacter code points may be used internally, such as for sentinel val-
ues or delimiters, but should not be exchanged publicly.

C3 A process shall not interpret an unassigned code point as an abstract character.

• This clause does not preclude the assignment of certain generic semantics to
unassigned code points (for example, rendering with a glyph to indicate the
position within a character block) that allow for graceful behavior in the pres-
ence of code points that are outside a supported subset.

• Unassigned code points may have default property values. (See D26.)

• Code points whose use has not yet been designated may be assigned to abstract
characters in future versions of the standard. Because of this fact, due care in
the handling of generic semantics for such code points is likely to provide better
robustness for implementations that may encounter data based on future ver-
sions of the standard.

Interpretation

C4 A process shall interpret a coded character sequence according to the character seman-
tics established by this standard, if that process does interpret that coded character
sequence.

• This restriction does not preclude internal transformations that are never visi-
ble external to the process.

C5 A process shall not assume that it is required to interpret any particular coded character
sequence.

• Processes that interpret only a subset of Unicode characters are allowed; there is
no blanket requirement to interpret all Unicode characters.

• Any means for specifying a subset of characters that a process can interpret is
outside the scope of this standard.

• The semantics of a private-use code point is outside the scope of this standard.

• Although these clauses are not intended to preclude enumerations or specifica-
tions of the characters that a process or system is able to interpret, they do sep-
arate supported subset enumerations from the question of conformance. In
actuality, any system may occasionally receive an unfamiliar character code that

it is unable to interpret.

C6 A process shall not assume that the interpretations of two canonical-equivalent charac-
ter sequences are distinct.

• The implications of this conformance clause are twofold. First, a process is
never required to give different interpretations to two different, but canonical-
equivalent character sequences. Second, no process can assume that another

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

72 Conformance

process will make a distinction between two different, but canonical-equivalent
character sequences.

• Ideally, an implementation would always interpret two canonical-equivalent
character sequences identically. There are practical circumstances under which
implementations may reasonably distinguish them.

• Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of
this behavior include graceful fallback processing by processes unable to sup-
port correct positioning of nonspacing marks; “Show Hidden Text” modes that
reveal memory representation structure; and the choice of ignoring collating
behavior of combining sequences that are not part of the repertoire of a speci-
fied language (see Section 5.12, Strategies for Handling Nonspacing Marks).

Modification

C7 When a process purports not to modify the interpretation of a valid coded character
sequence, it shall make no change to that coded character sequence other than the possi-
ble replacement of character sequences by their canonical-equivalent sequences or the
deletion of noncharacter code points.

• Replacement of a character sequence by a compatibility-equivalent sequence
does modify the interpretation of the text.

• Replacement or deletion of a character sequence that the process cannot or
does not interpret does modify the interpretation of the text.

• Changing the bit or byte ordering of a character sequence when transforming it
between different machine architectures does not modify the interpretation of
the text.

• Changing a valid coded character sequence from one Unicode character encod-
ing form to another does not modify the interpretation of the text.

• Changing the byte serialization of a code unit sequence from one Unicode
character encoding scheme to another does not modify the interpretation of
the text.

• If a noncharacter that does not have a specific internal use is unexpectedly
encountered in processing, an implementation may signal an error or delete or

ignore the noncharacter. If these options are not taken, the noncharacter
should be treated as an unassigned code point. For example, an API that
returned a character property value for a noncharacter would return the same
value as the default value for an unassigned code point.

• All processes and higher-level protocols are required to abide by conformance
clause C7 at a minimum. However, higher-level protocols may define addi-
tional equivalences that do not constitute modifications under that protocol.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.2 Conformance Requirements 73

For example, a higher-level protocol may allow a sequence of spaces to be
replaced by a single space.

Character Encoding Forms

C8 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall interpret that code unit sequence according to the corre-
sponding code point sequence.

• The specification of the code unit sequences for UTF-8 is given in D92.

• The specification of the code unit sequences for UTF-16 is given in D91.

• The specification of the code unit sequences for UTF-32 is given in D90.

C9 When a process generates a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall not emit ill-formed code unit sequences.

• The definition of each Unicode character encoding form specifies the ill-
formed code unit sequences in the character encoding form. For example, the
definition of UTF-8 (D92) specifies that code unit sequences such as <C0 AF>
are ill-formed.

C10 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall treat ill-formed code unit sequences as an error condition
and shall not interpret such sequences as characters.

• For example, in UTF-8 every code unit of the form 110xxxx2 must be followed
by a code unit of the form 10xxxxxx2. A sequence such as 110xxxxx2 0xxxxxxx2
is ill-formed and must never be generated. When faced with this ill-formed
code unit sequence while transforming or interpreting text, a conformant pro-
cess must treat the first code unit 110xxxxx2 as an illegally terminated code unit
sequence—for example, by signaling an error, filtering the code unit out, or
representing the code unit with a marker such as U+FFFD replacement

character.

• Conformant processes cannot interpret ill-formed code unit sequences. How-
ever, the conformance clauses do not prevent processes from operating on code
unit sequences that do not purport to be in a Unicode character encoding form.
For example, for performance reasons a low-level string operation may simply
operate directly on code units, without interpreting them as characters. See,

especially, the discussion under definition D89.

• Utility programs are not prevented from operating on “mangled” text. For
example, a UTF-8 file could have had CRLF sequences introduced at every 80
bytes by a bad mailer program. This could result in some UTF-8 byte sequences
being interrupted by CRLFs, producing illegal byte sequences. This mangled
text is no longer UTF-8. It is permissible for a conformant program to repair
such text, recognizing that the mangled text was originally well-formed UTF-8

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

74 Conformance

byte sequences. However, such repair of mangled data is a special case, and it
must not be used in circumstances where it would cause security problems.

Character Encoding Schemes

C11 When a process interprets a byte sequence which purports to be in a Unicode character
encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that
character encoding scheme.

• Machine architectures differ in ordering in terms of whether the most signifi-
cant byte or the least significant byte comes first. These sequences are known as
“big-endian” and “little-endian” orders, respectively.

• For example, when using UTF-16LE, pairs of bytes are interpreted as UTF-16
code units using the little-endian byte order convention, and any initial <FF
FE> sequence is interpreted as U+FEFF zero width no-break space (part of
the text), rather than as a byte order mark (not part of the text). (See D97.)

Bidirectional Text

C12 A process that displays text containing supported right-to-left characters or embedding
codes shall display all visible representations of characters (excluding format characters)
in the same order as if the Bidirectional Algorithm had been applied to the text, unless
tailored by a higher-level protocol as permitted by the specification.

• The Bidirectional Algorithm is specified in Unicode Standard Annex #9, “The
Bidirectional Algorithm.”

Normalization Forms

C13 A process that produces Unicode text that purports to be in a Normalization Form shall
do so in accordance with the specifications in Unicode Standard Annex #15, “Unicode
Normalization Forms.”

C14 A process that tests Unicode text to determine whether it is in a Normalization Form
shall do so in accordance with the specifications in Unicode Standard Annex #15, “Uni-
code Normalization Forms.”

C15 A process that purports to transform text into a Normalization Form must be able to

produce the results of the conformance test specified in Unicode Standard Annex #15,
“Unicode Normalization Forms.”

• This means that when a process uses the input specified in the conformance
test, its output must match the expected output of the test.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.2 Conformance Requirements 75

Normative References

C16 Normative references to the Unicode Standard itself, to property aliases, to property
value aliases, or to Unicode algorithms shall follow the formats specified in Section 3.1,
Versions of the Unicode Standard.

C17 Higher-level protocols shall not make normative references to provisional properties.

• Higher-level protocols may make normative references to informative proper-
ties.

Unicode Algorithms

C18 If a process purports to implement a Unicode algorithm, it shall conform to the specifi-
cation of that algorithm in the standard, including any tailoring by a higher-level pro-
tocol as permitted by the specification.

• The term Unicode algorithm is defined at D17.

• An implementation claiming conformance to a Unicode algorithm need only
guarantee that it produces the same results as those specified in the logical
description of the process; it is not required to follow the actual described pro-
cedure in detail. This allows room for alternative strategies and optimizations
in implementation.

C19 The specification of an algorithm may prohibit or limit tailoring by a higher-level pro-
tocol. If a process that purports to implement a Unicode algorithm applies a tailoring,
that fact must be disclosed.

• For example, the algorithms for normalization and canonical ordering are not
tailorable. The Bidirectional Algorithm allows some tailoring by higher-level
protocols. The Unicode Default Case algorithms may be tailored without limi-
tation.

Default Casing Algorithms

C20 An implementation that purports to support Default Case Conversion, Default Case
Detection, or Default Caseless Matching shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Algorithms.

• A conformant implementation may perform casing operations that are differ-

ent from the default algorithms, perhaps tailored to a particular orthography,
so long as the fact that a tailoring is applied is disclosed.

Unicode Standard Annexes

The following standard annexes are approved and considered part of Version 5.0 of the
Unicode Standard. These annexes may contain either normative or informative material, or

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

76 Conformance

both. Any reference to Version 5.0 of the standard automatically includes these standard
annexes.

• UAX #9: The Bidirectional Algorithm, Version 5.0.0

• UAX #11: East Asian Width, Version 5.0.0

• UAX #14: Line Breaking Properties, Version 5.0.0

• UAX #15: Unicode Normalization Forms, Version 5.0.0

• UAX #24: Script Names, Version 5.0.0

• UAX #29: Text Boundaries, Version 5.0.0

• UAX #31: Identifier and Pattern Syntax, Version 5.0.0

• UAX #34: Unicode Named Character Sequences, Version 5.0.0

Conformance to the Unicode Standard requires conformance to the specifications con-
tained in these annexes, as detailed in the conformance clauses listed earlier in this section.

3.3 Semantics

Definitions

This and the following sections more precisely define the terms that are used in the con-
formance clauses.

The numbering of definitions has been changed from that of prior versions of The Unicode
Standard. A cross-reference table enabling the matching of a definition between Version 5.0
and earlier versions of the standard is available in Section D.3, Clause and Definition Num-
bering Changes.

Character Identity and Semantics

D1 Normative behavior: The normative behaviors of the Unicode Standard consist of
the following list or any other behaviors specified in the conformance clauses:

• Character combination
• Canonical decomposition

• Compatibility decomposition

• Canonical ordering behavior

• Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “The Bidirectional Algorithm”)

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.3 Semantics 77

• Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behav-
ior

• Variation selection, as specified in Section 16.4, Variation Selectors

• Normalization, as specified in Unicode Standard Annex #15, “Unicode Nor-
malization Forms”

• Default casing, as specified in Section 3.13, Default Case Algorithms

D2 Character identity: The identity of a character is established by its character name
and representative glyph in Chapter 17, Code Charts.

• A character may have a broader range of use than the most literal interpretation
of its name might indicate; the coded representation, name, and representative
glyph need to be assessed in context when establishing the identity of a charac-
ter. For example, U+002E full stop can represent a sentence period, an abbre-
viation period, a decimal number separator in English, a thousands number
separator in German, and so on. The character name itself is unique, but may
be misleading. See “Character Names” in Section 17.1, Character Names List.

• Consistency with the representative glyph does not require that the images be
identical or even graphically similar; rather, it means that both images are gen-
erally recognized to be representations of the same character. Representing the
character U+0061 latin small letter a by the glyph “X” would violate its
character identity.

D3 Character semantics: The semantics of a character are determined by its identity,
normative properties, and behavior.

• Some normative behavior is default behavior; this behavior can be overridden
by higher-level protocols. However, in the absence of such protocols, the behav-
ior must be observed so as to follow the character semantics.

• The character combination properties and the canonical ordering behavior
cannot be overridden by higher-level protocols. The purpose of this constraint
is to guarantee that the order of combining marks in text and the results of nor-
malization are predictable.

D4 Character name: A unique string used to identify each abstract character encoded in
the standard.
• The character names in the Unicode Standard match those of the English edi-
tion of ISO/IEC 10646.

• Character names are immutable and cannot be overridden; they are stable
identifiers. For more information, see Section 4.8, Name—Normative.

• The name of a Unicode character is also formally a character property in the
Unicode Character Database. Its long property alias is “Name” and its short

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

78 Conformance

property alias is “na”. Its value is the unique string label associated with the
encoded character.

D5 Character name alias: An additional unique string identifier, other than the charac-
ter name, associated with an encoded character in the standard.

• Character name aliases are assigned when there is a serious clerical defect with
a character name, such that the character name itself may be misleading regard-
ing the identity of the character. A character name alias constitutes an alternate
identifier for the character.

• Character name aliases are unique within the common namespace shared by
character names, character name aliases, and named character sequences.

• Character name aliases are a formal, normative part of the standard and should
be distinguished from the informative, editorial aliases provided in the code
charts. See Section 17.1, Character Names List, for the notational conventions
used to distinguish the two.

D6 Namespace: A set of names together with name matching rules, so that all names are
distinct under the matching rules.

• Within a given namespace all names must be unique, although the same name
may be used with a different meaning in a different namespace.

• Character names, character name aliases, and named character sequences share
a single namespace in the Unicode Standard.

3.4 Characters and Encoding
D7 Abstract character: A unit of information used for the organization, control, or rep-

resentation of textual data.

• When representing data, the nature of that data is generally symbolic as
opposed to some other kind of data (for example, aural or visual). Examples of
such symbolic data include letters, ideographs, digits, punctuation, technical
symbols, and dingbats.

• An abstract character has no concrete form and should not be confused with a
glyph.
• An abstract character does not necessarily correspond to what a user thinks of
as a “character” and should not be confused with a grapheme.

• The abstract characters encoded by the Unicode Standard are known as Uni-
code abstract characters.

• Abstract characters not directly encoded by the Unicode Standard can often be
represented by the use of combining character sequences.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.4 Characters and Encoding 79

D8 Abstract character sequence: An ordered sequence of one or more abstract characters.

D9 Unicode codespace: A range of integers from 0 to 10FFFF16.

• This particular range is defined for the codespace in the Unicode Standard.
Other character encoding standards may use other codespaces.

D10 Code point: Any value in the Unicode codespace.

• A code point is also known as a code position.

• See D77 for the definition of code unit.

D11 Encoded character: An association (or mapping) between an abstract character and a
code point.

• An encoded character is also referred to as a coded character.

• While an encoded character is formally defined in terms of the mapping
between an abstract character and a code point, informally it can be thought of
as an abstract character taken together with its assigned code point.

• Occasionally, for compatibility with other standards, a single abstract character
may correspond to more than one code point—for example, “Å” corresponds
both to U+00C5 Å latin capital letter a with ring above and to U+212B
Å angstrom sign.

• A single abstract character may also be represented by a sequence of code
points—for example, latin capital letter g with acute may be represented by the
sequence <U+0047 latin capital letter g, U+0301 combining acute

accent>, rather than being mapped to a single code point.

D12 Coded character sequence: An ordered sequence of one or more code points.

• A coded character sequence is also known as a coded character representation.

• Normally a coded character sequence consists of a sequence of encoded charac-
ters, but it may also include noncharacters or reserved code points.

• Internally, a process may choose to make use of noncharacter code points in its
coded character sequences. However, such noncharacter code points may not
be interpreted as abstract characters (see conformance clause C2), and their
removal by a conformant process does not constitute modification of interpre-
tation of the coded character sequence (see conformance clause C7).
• Reserved code points are included in coded character sequences, so that the
conformance requirements regarding interpretation and modification are
properly defined when a Unicode-conformant implementation encounters
coded character sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term character
alone designates an encoded character. Similarly, the term character sequence alone desig-
nates a coded character sequence.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

80 Conformance

D13 Deprecated character: A coded character whose use is strongly discouraged. Such
characters are retained in the standard, but should not be used.

• Deprecated characters are retained in the standard so that previously conform-
ing data stay conformant in future versions of the standard. Deprecated charac-
ters should not be confused with obsolete characters, which are historical.
Obsolete characters do not occur in modern text, but they are not deprecated;
their use is not discouraged.

D14 Noncharacter: A code point that is permanently reserved for internal use and that
should never be interchanged. Noncharacters consist of the values U+nFFFE and
U+nFFFF (where n is from 0 to 1016) and the values U+FDD0..U+FDEF.

• For more information, see Section 16.7, Noncharacters.

• These code points are permanently reserved as noncharacters.

D15 Reserved code point: Any code point of the Unicode Standard that is reserved for
future assignment. Also known as an unassigned code point.

• Surrogate code points and noncharacters are considered assigned code points,
but not assigned characters.

• For a summary classification of reserved and other types of code points, see
Table 2-3.

In general, a conforming process may indicate the presence of a code point whose use has
not been designated (for example, by showing a missing glyph in rendering or by signaling
an appropriate error in a streaming protocol), even though it is forbidden by the standard
from interpreting that code point as an abstract character.

D16 Higher-level protocol: Any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard.

• Such an agreement need not be formally announced in data; it may be implicit
in the context.

• The specification of some Unicode algorithms may limit the scope of what a
conformant higher-level protocol may do.

D17 Unicode algorithm: The logical description of a process used to achieve a specified
result involving Unicode characters.
• This definition, as used in the Unicode Standard and other publications of the
Unicode Consortium, is intentionally broad so as to allow precise logical
description of required results, without constraining implementations to fol-
low the precise steps of that logical description.

D18 Named Unicode algorithm: A Unicode algorithm that is specified in the Unicode
Standard or in other standards published by the Unicode Consortium and that is
given an explicit name for ease of reference.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.5 Properties 81

• Named Unicode algorithms are cited in titlecase in the Unicode Standard.

• When referenced outside the context of the Unicode Standard, it is customary
to prepend the word “Unicode” to the name of the algorithm.

Table 3-1 lists the named Unicode algorithms and indicates the locations of their specifica-
tions. Details regarding conformance to these algorithms and any restrictions they place on
the scope of allowable tailoring by higher-level protocols can be found in the specifications.
In some cases, a named Unicode algorithm is provided for information only.

Table 3-1. Named Unicode Algorithms

Name Description

Canonical Ordering Section 3.11

Hangul Syllable Boundary Determination Section 3.12

Hangul Syllable Composition Section 3.12

Hangul Syllable Decomposition Section 3.12

Hangul Syllable Name Generation Section 3.12

Default Case Conversion Section 3.13

Default Case Detection Section 3.13

Default Caseless Matching Section 3.13 and Section 5.18

Bidirectional Algorithm UAX #9

Line Breaking Algorithm UAX #14

Normalization Algorithm UAX #15

Grapheme Cluster Boundary Determination UAX #29

Word Boundary Determination UAX #29

Sentence Boundary Determination UAX #29

Default Identifier Determination UAX #31

Alternative Identifier Determination UAX #31

Pattern Syntax Determination UAX #31

Identifier Normalization UAX #31

Identifier Case Folding UAX #31

Standard Compression Scheme for Unicode (SCSU) UTS #6

Collation Algorithm (UCA) UTS #10

3.5 Properties

The Unicode Standard specifies many different types of character properties. This section
provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Character
Database. See Section 4.1, Unicode Character Database, for an overview of those data files.
Chapter 4, Character Properties, contains more detailed descriptions of some particular,
important character properties. Additional properties that are specific to particular charac-

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

82 Conformance

ters (such as the definition and use of the right-to-left override character or zero width space)
are discussed in the relevant sections of this standard.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of other properties (such as directionality) is applicable
to a character sequence as a whole, rather than to the individual characters that compose
the sequence.

Types of Properties

D19 Property: A named attribute of an entity in the Unicode Standard, associated with a
defined set of values.

D20 Code point property: A property of code points.

• Code point properties refer to attributes of code points per se, based on archi-
tectural considerations of this standard, irrespective of any particular encoded
character.

• Thus the Surrogate property and the Noncharacter property are code point
properties.

D21 Abstract character property: A property of abstract characters.

• Abstract character properties refer to attributes of abstract characters per se,
based on their independent existence as elements of writing systems or other
notational systems, irrespective of their encoding in the Unicode Standard.

• Thus the Alphabetic property, the Punctuation property, the Hex_Digit prop-
erty, the Numeric_Value property, and so on are properties of abstract charac-
ters and are associated with those characters whether encoded in the Unicode
Standard or in any other character encoding—or even prior to their being
encoded in any character encoding standard.

D22 Encoded character property: A property of encoded characters in the Unicode Stan-
dard.

• For each encoded character property there is a mapping from every code point
to some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of char-
acter property APIs based on the Unicode Character Database. Typically, an API will take a

property and a code point as input, and will return a value for that property as output,
interpreting it as the “character property” for the “character” encoded at that code point.
However, to be useful, such APIs must return meaningful values for unassigned code
points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly equiv-
alent to a code point property. For example, the Pattern_Syntax property simply defines a

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.5 Properties 83

range of code points that are reserved for pattern syntax. (See Unicode Standard Annex
#31, “Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract character
property, but extends the domain of the property to include all code points, including
unassigned code points. For Boolean properties, such as the Hex_Digit property, typically
an encoded character property will be true for the encoded characters with that abstract
character property and will be false for all other code points, including unassigned code
points, noncharacters, private-use characters, and encoded characters for which the
abstract character property is inapplicable or irrelevant.

However, in many instances, an encoded character property is semantically complex and
may telescope together values associated with a number of abstract character properties
and/or code point properties. The General_Category property is an example—it contains
values associated with several abstract character properties (such as Letter, Punctuation,
and Symbol) as well as code point properties (such as \p{gc=Cs} for the Surrogate code
point property).

In the text of this standard the terms “Unicode character property,” “character property,”
and “property” without qualifier generally refer to an encoded character property, unless
otherwise indicated.

A list of the encoded character properties formally considered to be a part of the Unicode
Standard can be found in PropertyAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

Property Values

D23 Property value: One of the set of values associated with an encoded character prop-
erty.

• For example, the East_Asian_Width [EAW] property has the possible values
“Narrow”, “Neutral”, “Wide”, “Ambiguous”, and “Unassigned”.

A list of the values associated with encoded character properties in the Unicode Standard
can be found in PropertyValueAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

D24 Explicit property value: A value for an encoded character property that is explicitly
associated with a code point in one of the data files of the Unicode Character Data-

base.

D25 Implicit property value: A value for an encoded character property that is given by a
generic rule or by an “otherwise” clause in one of the data files of the Unicode Char-
acter Database.

• Implicit property values are used to avoid having to explicitly list values for
more than 1 million code points (most of them unassigned) for every property.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

84 Conformance

D26 Default property value: The value (or in some cases small set of values) of a property
associated with unassigned code points or with encoded characters for which the
property is irrelevant.

• For example, for most Boolean properties, “false” is the default property value.
In such cases, the default property value used for unassigned code points may
be the same value that is used for many assigned characters as well.

• Some properties, particularly enumerated properties, specify a particular,
unique value as their default value. For example, “XX” is the default property
value for the Line_Break property.

• A default property value is typically defined implicitly, to avoid having to repeat
long lists of unassigned code points.

• In the case of some properties with arbitrary string values, the default property
value is an implied null value. For example, the fact that there is no Unicode
character name for unassigned code points is equivalent to saying that the
default property value for the Name property for an unassigned code point is a
null string.

• In some instances, an encoded character property may have multiple default
values. For example, the Bidi_Class property defines a range of unassigned code
points as having the “R” value, another range of unassigned code points as hav-
ing the “AL” value, and the otherwise case as having the “L” value.

Classification of Properties by Their Values

D27 Enumerated property: A property with a small set of named values.

• As characters are added to the Unicode Standard, the set of values may need to
be extended in the future, but enumerated properties have a relatively fixed set
of possible values.

D28 Closed enumeration: An enumerated property for which the set of values is closed
and will not be extended for future versions of the Unicode Standard.

• Currently, the General Category is the only closed enumeration, except for the
Boolean properties.

D29 Boolean property: A closed enumerated property whose set of values is limited to

“true” and “false”.

• The presence or absence of the property is the essential information.

D30 Numeric property: A numeric property is a property whose value is a number that
can take on any integer or real value.

• An example is the Numeric_Value property. There is no implied limit to the
number of possible distinct values for the property, except the limitations on
representing integers or real numbers in computers.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.5 Properties 85

D31 String-valued property: A property whose value is a string.

• The Canonical_Decomposition property is a string-valued property.

D32 Catalog property: A property that is an enumerated property, typically unrelated to
an algorithm, that may be extended in each successive version of the Unicode Stan-
dard.

• Examples are the Age and Block properties. Additional values for both may be
added each time a new version of the Unicode Standard adds new characters or
blocks.

Normative and Informative Properties

Unicode character properties are divided into those that are normative and those that are
informative.

D33 Normative property: A Unicode character property used in the specification of the
standard.

Specification that a character property is normative means that implementations which
claim conformance to a particular version of the Unicode Standard and which make use of
that particular property must follow the specifications of the standard for that property for
the implementation to be conformant. For example, the directionality property (bidirec-
tional character type) is required for conformance whenever rendering text that requires
bidirectional layout, such as Arabic or Hebrew.

Whenever a normative process depends on a property in a specified way, that property is
designated as normative.

The fact that a given Unicode character property is normative does not mean that the val-
ues of the property will never change for particular characters. Corrections and extensions
to the standard in the future may require minor changes to normative values, even though
the Unicode Technical Committee strives to minimize such changes. See also “Stability of
Properties” later in this section.

Some of the normative Unicode algorithms depend critically on particular property values
for their behavior. Normalization, for example, defines an aspect of textual interoperability
that many applications rely on to be absolutely stable. As a result, some of the normative
properties disallow any kind of overriding by higher-level protocols. Thus the decomposi-
tion of Unicode characters is both normative and not overridable; no higher-level protocol

may override these values, because to do so would result in non-interoperable results for
the normalization of Unicode text. Other normative properties, such as case mapping, are
overridable by higher-level protocols, because their intent is to provide a common basis for
behavior. Nevertheless, they may require tailoring for particular local cultural conventions
or particular implementations.

Some important normative character properties of the Unicode Standard are listed in
Table 3-2, with an indication of which sections in the standard provide a general descrip-

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

86 Conformance

tion of the properties and their use. Other normative properties are documented in the
Unicode Character Database. In all cases, the Unicode Character Database provides the
definitive list of character properties and the exact list of property value assignments for
each version of the standard. A list of additional special character properties can be found
in Section 4.12, Characters with Unusual Properties.

Table 3-2. Normative Character Properties

Property Description

Bidi_Class (directionality) UAX #9 and Section 4.4

Bidi_Mirrored Section 4.7 and UAX #9

Block Chapter 17

Canonical_Combining_Class Section 3.11, Section 4.3, and UAX #15

Case-related properties Section 3.13, Section 4.2, and Chapter 17

Composition_Exclusion UAX #15

Decomposition_Mapping Chapter 3, Chapter 17, and UAX #15

Default_Ignorable_Code_Point Section 5.20

Deprecated Section 3.1

General_Category Section 4.5

Hangul_Syllable_Type Section 3.12 and UAX #29

Jamo_Short_Name Section 3.12

Joining_Type and Joining_Group Section 8.2

Name Chapter 17

Noncharacter_Code_Point Section 16.7

Numeric_Value Section 4.6

White_Space UCD.html

D34 Overridable property: A normative property whose values may be overridden by
conformant higher-level protocols.

• For example, the Canonical_Decomposition property is not overridable. The
Uppercase property can be overridden.

D35 Informative property: A Unicode character property whose values are provided for
information only.

A conformant implementation of the Unicode Standard is free to use or change informa-
tive property values as it may require, while remaining conformant to the standard. An

implementer always has the option of establishing a protocol to convey the fact that infor-
mative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informative
property is explicitly specified in the Unicode Character Database, its use is strongly rec-
ommended for implementations to encourage comparable behavior between implementa-
tions. Note that it is possible for an informative property in one version of the Unicode
Standard to become a normative property in a subsequent version of the standard if its use
starts to acquire conformance implications in some part of the standard.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.5 Properties 87

Table 3-3 provides a partial list of the more important informative character properties. For
a complete listing, see the Unicode Character Database.

Table 3-3. Informative Character Properties

Property Description

Dash Section 6.2 and Table 6-3

East_Asian_Width Section 12.4 and UAX #11

Letter-related properties Section 4.10

Line_Break Section 16.1, Section 16.2, and UAX #14

Mathematical Section 15.4

Script UAX #24

Space Section 6.2 and Table 6-2

Unicode_1_Name Section 4.9

D36 Provisional property: A Unicode character property whose values are unapproved
and tentative, and which may be incomplete or otherwise not in a usable state.

• Provisional properties may be removed from future versions of the standard,
without prior notice.

Some of the information provided about characters in the Unicode Character Database
constitutes provisional data. This data may capture partial or preliminary information. It
may contain errors or omissions, or otherwise not be ready for systematic use; however, it is
included in the data files for distribution partly to encourage review and improvement of
the information. For example, a number of the tags in the Unihan.txt file provide provi-
sional property values of various sorts about Han characters.

The data files of the Unicode Character Database may also contain various annotations and
comments about characters, and those annotations and comments should be considered
provisional. Implementations should not attempt to parse annotations and comments out
of the data files and treat them as informative character properties per se.

Context Dependence

D37 Context-dependent property: A property that applies to a code point in the context of
a longer code point sequence.

• For example, the lowercase mapping of a Greek sigma depends on the context

of the surrounding characters.

D38 Context-independent property: A property that is not context dependent; it applies to
a code point in isolation.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

88 Conformance

Stability of Properties

D39 Stable transformation: A transformation T on a property P is stable with respect to
an algorithm A if the result of the algorithm on the transformed property A(T(P)) is
the same as the original result A(P) for all code points.

D40 Stable property: A property is stable with respect to a particular algorithm or process
as long as possible changes in the assignment of property values are restricted in
such a manner that the result of the algorithm on the property continues to be the
same as the original result for all previously assigned code points.

• For example, while the absolute values of the canonical combining classes are
not guaranteed to be the same between versions of the Unicode Standard, their
relative values will be maintained. As a result, the Canonical Combining Class,
while not immutable, is a stable property with respect to the Normalization
Forms as defined in Unicode Standard Annex #15, “Unicode Normalization
Forms.”

• As new characters are assigned to previously unassigned code points, the
replacement of any default values for these code points with actual property
values must maintain stability.

D41 Fixed property: A property whose values (other than a default value), once associated
with a specific code point, are fixed and will not be changed, except to correct obvi-
ous or clerical errors.

• For a fixed property, any default values can be replaced without restriction by
actual property values as new characters are assigned to previously unassigned
code points. Examples of fixed properties include Age and
Hangul_Syllable_Type.

• Designating a property as fixed does not imply stability or immutability (see
“Stability” in Section 3.1, Versions of the Unicode Standard). While the age of a
character, for example, is established by the version of the Unicode Standard to
which it was added, errors in the published listing of the property value could
be corrected. For some other properties, explicit stability guarantees prohibit
the correction even of such errors.

D42 Immutable property: A fixed property that is also subject to a stability guarantee pre-
venting any change in the published listing of property values other than assignment
of new values to formerly unassigned code points.
• An immutable property is trivially stable with respect to all algorithms.

• An example of an immutable property is the Unicode character name itself.
Because character names are values of an immutable property, misspellings and
incorrect names will never be corrected clerically. Any errata will be noted in a
comment in the character names list and, where needed, an informative char-
acter name alias will be provided.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.5 Properties 89

• When an encoded character property representing a code point property is
immutable, none of its values can ever change. This follows from the fact that
the code points themselves do not change, and the status of the property is
unaffected by whether a particular abstract character is encoded at a code point
later. An example of such a property is the Pattern_Syntax property; all values
of that property are unchangeable for all code points, forever.

• In the more typical case of an immutable property, the values for existing
encoded characters cannot change, but when a new character is encoded, the
formerly unassigned code point changes from having a default value for the
property to having one of its nondefault values. Once that nondefault value is
published, it can no longer be changed.

D43 Stabilized property: A property that is neither extended to new characters nor main-
tained in any other manner, but that is retained in the Unicode Character Database.

• A stabilized property is also a fixed property.

D44 Deprecated property: A property whose use by implementations is discouraged.

• One of the reasons a property may be deprecated is because a different combi-
nation of properties better expresses the intended semantics.

• Where sufficiently widespread legacy support exists for the deprecated prop-
erty, not all implementations may be able to discontinue the use of the depre-
cated property. In such a case, a deprecated property may be extended to new
characters so as to maintain it in a usable and consistent state.

Informative or normative properties in the standard will not be removed even when they
are supplanted by other properties or are no longer useful. However, they may be stabilized
and/or deprecated.

For a list of stability policies related to character properties, see Appendix F, Unicode Encod-
ing Stability Policies.

Simple and Derived Properties

D45 Simple property: A Unicode character property whose values are specified directly in
the Unicode Character Database (or elsewhere in the standard) and whose values
cannot be derived from other simple properties.
D46 Derived property: A Unicode character property whose values are algorithmically
derived from some combination of simple properties.

The Unicode Character Database lists a number of derived properties explicitly. Even
though these values can be derived, they are provided as lists because the derivation may
not be trivial and because explicit lists are easier to understand, reference, and implement.
Good examples of derived properties include the ID_Start and ID_Continue properties,
which can be used to specify a formal identifier syntax for Unicode characters. The details

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

90 Conformance

of how derived properties are computed can be found in the documentation for the Uni-
code Character Database.

Property Aliases

To enable normative references to Unicode character properties, formal aliases for proper-
ties and for property values are defined as part of the Unicode Character Database.

D47 Property alias: A unique identifier for a particular Unicode character property.

• The identifiers used for property aliases contain only ASCII alphanumeric
characters or the underscore character.

• Short and long forms for each property alias are defined. The short forms are
typically just two or three characters long to facilitate their use as attributes for
tags in markup languages. For example, “General_Category” is the long form
and “gc” is the short form of the property alias for the General Category prop-
erty.

• Property aliases are defined in the file PropertyAliases.txt in the Unicode Char-
acter Database.

• Property aliases of normative properties are themselves normative.

D48 Property value alias: A unique identifier for a particular enumerated value for a par-
ticular Unicode character property.

• The identifiers used for property value aliases contain only ASCII alphanu-
meric characters or the underscore character, or have the special value “n/a”.

• Short and long forms for property value aliases are defined. For example,
“Currency_Symbol” is the long form and “Sc” is the short form of the property
value alias for the currency symbol value of the General Category property.

• Property value aliases are defined in the file PropertyValueAliases.txt in the
Unicode Character Database.

• Property value aliases are unique identifiers only in the context of the particular
property with which they are associated. The same identifier string might be
associated with an entirely different value for a different property. The combi-
nation of a property alias and a property value alias is, however, guaranteed to
be unique.
• Property value aliases referring to values of normative properties are themselves
normative.

The property aliases and property value aliases can be used, for example, in XML formats
of property data, for regular-expression property tests, and in other programmatic textual
descriptions of Unicode property data. Thus “gc=Lu” is a formal way of specifying that the
General Category of a character (using the property alias “gc”) has the value of being an
uppercase letter (using the property value alias “Lu”).

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.6 Combination 91

Private Use

D49 Private-use code point: Code points in the ranges U+E000..U+F8FF, U+F0000..
U+FFFFD, and U+100000..U+10FFFD.

• Private-use code points are considered to be assigned characters, but the
abstract characters associated with them have no interpretation specified by
this standard. They can be given any interpretation by conformant processes.

• Private-use code points may be given default property values, but these default
values are overridable by higher-level protocols that give those private-use code
points a specific interpretation.

3.6 Combination
D50 Graphic character: A character with the General Category of Letter (L), Combining

Mark (M), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Graphic characters specifically exclude the line and paragraph separators (Zl,
Zp), as well as the characters with the General Category of Other (Cn, Cs, Cc,
Cf).

• The interpretation of private-use characters (Co) as graphic characters or not is
determined by the implementation.

• For more information, see Chapter 2, General Structure, especially Section 2.4,
Code Points and Characters, and Table 2-3.

D51 Base character: Any graphic character except for those with the General Category of
Combining Mark (M).

• Most Unicode characters are base characters. In terms of General Category val-
ues, a base character is any code point that has one of the following categories:
Letter (L), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Base characters do not include control characters or format controls.

• Base characters are independent graphic characters, but this does not preclude
the presentation of base characters from adopting different contextual forms or
participating in ligatures.
• The interpretation of private-use characters (Co) as base characters or not is
determined by the implementation. However, the default interpretation of pri-
vate-use characters should be as base characters, in the absence of other infor-
mation.

D52 Combining character: A character with the General Category of Combining Mark
(M).

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

92 Conformance

• Combining characters consist of all characters with the General Category val-
ues of Spacing Combining Mark (Mc), Nonspacing Mark (Mn), and Enclosing
Mark (Me).

• All characters with non-zero canonical combining class are combining charac-
ters, but the reverse is not the case: there are combining characters with a zero
canonical combining class.

• The interpretation of private-use characters (Co) as combining characters or
not is determined by the implementation.

• These characters are not normally used in isolation unless they are being
described. They include such characters as accents, diacritics, Hebrew points,
Arabic vowel signs, and Indic matras.

• The graphic positioning of a combining character depends on the last preced-
ing base character, unless they are separated by a character that is neither a
combining character nor either zero width joiner or zero width non-

joiner. The combining character is said to apply to that base character.

• There may be no such base character, such as when a combining character is at
the start of text or follows a control or format character—for example, a car-
riage return, tab, or right-left mark. In such cases, the combining characters
are called isolated combining characters.

• With isolated combining characters or when a process is unable to perform
graphical combination, a process may present a combining character without
graphical combination; that is, it may present it as if it were a base character.

• The representative images of combining characters are depicted with a dotted
circle in the code charts. When presented in graphical combination with a pre-
ceding base character, that base character is intended to appear in the position
occupied by the dotted circle.

D53 Nonspacing mark: A combining character with the General Category of Nonspacing
Mark (Mn) or Enclosing Mark (Me).

• The position of a nonspacing mark in presentation depends on its base charac-
ter. It generally does not consume space along the visual baseline in and of
itself.

• Such characters may be large enough to affect the placement of their base char-

acter relative to preceding and succeeding base characters. For example, a cir-
cumflex applied to an “i” may affect spacing (“î”), as might the character
U+20DD combining enclosing circle.

D54 Enclosing mark: A nonspacing mark with the General Category of Enclosing Mark
(Me).

• Enclosing marks are a subclass of nonspacing marks that surround a base char-
acter, rather than merely being placed over, under, or through it.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.6 Combination 93

D55 Spacing mark: A combining character that is not a nonspacing mark.

• Examples include U+093F devanagari vowel sign i. In general, the behavior
of spacing marks does not differ greatly from that of base characters.

• Spacing marks such as U+0BCA tamil vowel sign o may appear on both sides
of a base character, but are not enclosing marks.

D56 Combining character sequence: A maximal character sequence consisting of either a
base character followed by a sequence of one or more characters where each is a
combining character, zero width joiner, or zero width non-joiner; or a
sequence of one or more characters where each is a combining character, zero

width joiner, or zero width non-joiner.

• When identifying a combining character sequence in Unicode text, the defini-
tion of the combining character sequence is applied maximally. For example, in
the sequence <c, dot-below, caron, acute, a>, the entire sequence <c, dot-
below, caron, acute> is identified as the combining character sequence, rather
than the alternative of identifying <c, dot-below> as a combining character
sequence followed by a separate (defective) combining character sequence
<caron, acute>.

D57 Defective combining character sequence: A combining character sequence that does
not start with a base character.

• Defective combining character sequences occur when a sequence of combining
characters appears at the start of a string or follows a control or format charac-
ter. Such sequences are defective from the point of view of handling of combin-
ing marks, but are not ill-formed. (See D84.)

D58 Grapheme base: A character with the property Grapheme_Base, or any standard
Korean syllable block.

• Characters with the property Grapheme_Base include all base characters plus
most spacing marks.

• The concept of a grapheme base is introduced to simplify discussion of the
graphical application of nonspacing marks to other elements of text. A graph-
eme base may consist of a spacing (combining) mark, which distinguishes it
from a base character per se. A grapheme base may also itself consist of a
sequence of characters, in the case of the standard Korean syllable block.
• For the definition of standard Korean syllable block, see D117 in Section 3.12,
Conjoining Jamo Behavior.

D59 Grapheme extender: A character with the property Grapheme_Extend.

• Grapheme extender characters consist of all nonspacing marks, zero width

joiner, zero width non-joiner, and a small number of spacing marks.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

94 Conformance

• A grapheme extender can be conceived of primarily as the kind of nonspacing
graphical mark that is applied above or below another spacing character.

• zero width joiner and zero width non-joiner are formally defined to be
grapheme extenders so that their presence does not break up a sequence of
other grapheme extenders.

• The small number of spacing marks that have the property Grapheme_Extend
are all the second parts of a two-part combining mark.

D60 Grapheme cluster: A maximal character sequence consisting of a grapheme base fol-
lowed by zero or more grapheme extenders or, alternatively, the sequence <CR, LF>.

• The grapheme cluster represents a horizontally segmentable unit of text, con-
sisting of some grapheme base (which may consist of a Korean syllable)
together with any number of nonspacing marks applied to it.

• A grapheme cluster is similar, but not identical to a combining character
sequence. A combining character sequence starts with a base character and
extends across any subsequent sequence of combining marks, nonspacing or
spacing. A combining character sequence is most directly relevant to processing
issues related to normalization, comparison, and searching.

• A grapheme cluster starts with a grapheme base and extends across any subse-
quent sequence of nonspacing marks. A grapheme cluster is most directly rele-
vant to text rendering and such processes as cursor placement and text selection
in editing.

• In most processing using character properties, a grapheme behaves as if it were
a single character cluster with the same properties as the grapheme base. For
example, <x, macron> behaves in line breaking or bidirectional layout as if it
were the character x.

• For many processes, a grapheme cluster behaves as if it were a single character
with the same properties as its base character. Effectively, nonspacing marks
apply graphically to the base character but do not change the properties of the
base character.

D61 Extended grapheme cluster: The text between grapheme cluster boundaries as speci-
fied by Unicode Standard Annex #29, “Text Boundaries.”

• Extended grapheme clusters are either a grapheme cluster, a single character

such as a control character, or the sequence <CR, LF>. They do not have lin-
guistic significance, but are used to break up a string of text into units for pro-
cessing.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.7 Decomposition 95

3.7 Decomposition
D62 Decomposition mapping: A mapping from a character to a sequence of one or more

characters that is a canonical or compatibility equivalent, and that is listed in the
character names list or described in Section 3.12, Conjoining Jamo Behavior.

• Each character has at most one decomposition mapping. The mappings in
Section 3.12, Conjoining Jamo Behavior, are canonical mappings. The mappings
in the character names list are identified as either canonical or compatibility
mappings (see Section 17.1, Character Names List).

D63 Decomposable character: A character that is equivalent to a sequence of one or more
other characters, according to the decomposition mappings found in the Unicode
Character Database, and those described in Section 3.12, Conjoining Jamo Behavior.

• A decomposable character is also referred to as a precomposed character or com-
posite character.

• The decomposition mappings from the Unicode Character Database are also
given in Section 17.1, Character Names List.

D64 Decomposition: A sequence of one or more characters that is equivalent to a decom-
posable character. A full decomposition of a character sequence results from decom-
posing each of the characters in the sequence until no characters can be further
decomposed.

Compatibility Decomposition

D65 Compatibility decomposition: The decomposition of a character that results from
recursively applying both the compatibility mappings and the canonical mappings
found in the Unicode Character Database, and those described in Section 3.12, Con-
joining Jamo Behavior, until no characters can be further decomposed, and then
reordering nonspacing marks according to Section 3.11, Canonical Ordering Behav-
ior.

• The decomposition mappings from the Unicode Character Database are also
given in Section 17.1, Character Names List.

• Some compatibility decompositions remove formatting information.
D66 Compatibility decomposable character: A character whose compatibility decomposi-
tion is not identical to its canonical decomposition. It may also be known as a com-
patibility precomposed character or a compatibility composite character.

• For example, U+00B5 micro sign has no canonical decomposition mapping,
so its canonical decomposition is the same as the character itself. It has a com-
patibility decomposition to U+03BC greek small letter mu. Because micro

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

96 Conformance

sign has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

• For example, U+03D3 greek upsilon with acute and hook symbol canon-
ically decomposes to the sequence <U+03D2 greek upsilon with hook sym-

bol, U+0301 combining acute accent>. That sequence has a compatibility
decomposition of <U+03A5 greek capital letter upsilon, U+0301 com-

bining acute accent>. Because greek upsilon with acute and hook sym-

bol has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

• This term should not be confused with the term “compatibility character,”
which is discussed in Section 2.3, Compatibility Characters.

• Many compatibility decomposable characters are included in the Unicode
Standard solely to represent distinctions in other base standards. They support
transmission and processing of legacy data. Their use is discouraged other than
for legacy data or other special circumstances.

• Some widely used and indispensable characters, such as NBSP, are compatibil-
ity decomposable characters for historical reasons. Their use is not discour-
aged.

• A large number of compatibility decomposable characters are used in phonetic
and mathematical notation, where their use is not discouraged.

• For historical reasons, some characters that might have been given a compati-
bility decomposition were not, in fact, decomposed. Stability of normalization
prevents adding decompositions in the future.

• Replacing a compatibility decomposable character by its compatibility decom-
position may lose round-trip convertibility with a base standard.

D67 Compatibility equivalent: Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.

Canonical Decomposition

D68 Canonical decomposition: The decomposition of a character that results from recur-
sively applying the canonical mappings found in the Unicode Character Database
and those described in Section 3.12, Conjoining Jamo Behavior, until no characters

can be further decomposed, and then reordering nonspacing marks according to
Section 3.11, Canonical Ordering Behavior.

• The decomposition mappings from the Unicode Character Database are also
printed in Section 17.1, Character Names List.

• A canonical decomposition does not remove formatting information.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.8 Surrogates 97

D69 Canonical decomposable character: A character that is not identical to its canonical
decomposition. It may also be known as a canonical precomposed character or a
canonical composite character.

• For example, U+00E0 latin small letter a with grave is a canonical
decomposable character because its canonical decomposition is to the sequence
<U+0061 latin small letter a, U+0300 combining grave accent>.
U+212A kelvin sign is a canonical decomposable character because its canon-
ical decomposition is to U+004B latin capital letter k.

D70 Canonical equivalent: Two character sequences are said to be canonical equivalents if
their full canonical decompositions are identical.

• For example, the sequences <o, combining-diaeresis> and <ö> are canonical
equivalents. Canonical equivalence is a Unicode property. It should not be con-
fused with language-specific collation or matching, which may add other
equivalencies. For example, in Swedish, ö is treated as a completely different let-
ter from o and is collated after z. In German, ö is weakly equivalent to oe and is
collated with oe. In English, ö is just an o with a diacritic that indicates that it is
pronounced separately from the previous letter (as in coöperate) and is collated
with o.

• By definition, all canonical-equivalent sequences are also compatibility-equiva-
lent sequences.

For information on the use of decomposition in normalization, see Unicode Standard
Annex #15, “Unicode Normalization Forms.”

3.8 Surrogates
D71 High-surrogate code point: A Unicode code point in the range U+D800 to U+DBFF.

D72 High-surrogate code unit: A 16-bit code unit in the range D80016 to DBFF16, used in
UTF-16 as the leading code unit of a surrogate pair.

D73 Low-surrogate code point: A Unicode code point in the range U+DC00 to U+DFFF.

D74 Low-surrogate code unit: A 16-bit code unit in the range DC0016 to DFFF16, used in
UTF-16 as the trailing code unit of a surrogate pair.
• High-surrogate and low-surrogate code points are designated only for that use.

• High-surrogate and low-surrogate code units are used only in the context of the
UTF-16 character encoding form.

D75 Surrogate pair: A representation for a single abstract character that consists of a
sequence of two 16-bit code units, where the first value of the pair is a high-surro-
gate code unit and the second value is a low-surrogate code unit.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

98 Conformance

• Surrogate pairs are used only in UTF-16. (See Section 3.9, Unicode Encoding
Forms.)

• Isolated surrogate code units have no interpretation on their own. Certain
other isolated code units in other encoding forms also have no interpretation
on their own. For example, the isolated byte 8016 has no interpretation in UTF-
8; it can be used only as part of a multibyte sequence. (See Table 3-7.)

• Sometimes high-surrogate code units are referred to as leading surrogates. Low-
surrogate code units are then referred to as trailing surrogates. This is analogous
to usage in UTF-8, which has leading bytes and trailing bytes.

• For more information, see Section 16.6, Surrogates Area, and Section 5.4, Han-
dling Surrogate Pairs in UTF-16.

3.9 Unicode Encoding Forms
The Unicode Standard supports three character encoding forms: UTF-32, UTF-16, and
UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF and
U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is specified
for each encoding form. This section presents the formal definition of each of these encod-
ing forms.

D76 Unicode scalar value: Any Unicode code point except high-surrogate and low-surro-
gate code points.

• As a result of this definition, the set of Unicode scalar values consists of the
ranges 0 to D7FF16 and E00016 to 10FFFF16, inclusive.

D77 Code unit: The minimal bit combination that can represent a unit of encoded text
for processing or interchange.

• Code units are particular units of computer storage. Other character encoding
standards typically use code units defined as 8-bit units—that is, octets. The
Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit
code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32
encoding form.

• A code unit is also referred to as a code value in the information industry.
• In the Unicode Standard, specific values of some code units cannot be used to
represent an encoded character in isolation. This restriction applies to isolated
surrogate code units in UTF-16 and to the bytes 80–FF in UTF-8. Similar
restrictions apply for the implementations of other character encoding stan-
dards; for example, the bytes 81–9F, E0–FC in SJIS (Shift-JIS) cannot represent
an encoded character by themselves.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.9 Unicode Encoding Forms 99

• For information on use of wchar_t or other programming language types to
represent Unicode code units, see “ANSI/ISO C wchar_t” in Section 5.2, Pro-
gramming Languages and Data Types.

D78 Code unit sequence: An ordered sequence of one or more code units.

• When the code unit is an 8-bit unit, a code unit sequence may also be referred
to as a byte sequence.

• A code unit sequence may consist of a single code unit.

• In the context of programming languages, the value of a string data type basi-
cally consists of a code unit sequence. Informally, a code unit sequence is itself
just referred to as a string, and a byte sequence is referred to as a byte string. Care
must be taken in making this terminological equivalence, however, because the
formally defined concept of a string may have additional requirements or com-
plications in programming languages. For example, a string is defined as a
pointer to char in the C language and is conventionally terminated with a NULL
character. In object-oriented languages, a string is a complex object, with asso-
ciated methods, and its value may or may not consist of merely a code unit
sequence.

• Depending on the structure of a character encoding standard, it may be neces-
sary to use a code unit sequence (of more than one unit) to represent a single
encoded character. For example, the code unit in SJIS is a byte: encoded charac-
ters such as “a” can be represented with a single byte in SJIS, whereas ideo-
graphs require a sequence of two code units. The Unicode Standard also makes
use of code unit sequences whose length is greater than one code unit.

D79 A Unicode encoding form assigns each Unicode scalar value to a unique code unit
sequence.

• For historical reasons, the Unicode encoding forms are also referred to as Uni-
code (or UCS) transformation formats (UTF). That term is actually ambiguous
between its usage for encoding forms and encoding schemes.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is one-to-one. This property guarantees
that a reverse mapping can always be derived. Given the mapping of any Uni-
code scalar value to a particular code unit sequence for a given encoding form,
one can derive the original Unicode scalar value unambiguously from that code

unit sequence.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is not onto. In other words, for any
given encoding form, there exist code unit sequences that have no associated
Unicode scalar value.

• To ensure that the mapping for a Unicode encoding form is one-to-one, all
Unicode scalar values, including those corresponding to noncharacter code

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

100 Conformance

points and unassigned code points, must be mapped to unique code unit
sequences. Note that this requirement does not extend to high-surrogate and
low-surrogate code points, which are excluded by definition from the set of
Unicode scalar values.

D80 Unicode string: A code unit sequence containing code units of a particular Unicode
encoding form.

• In the rawest form, Unicode strings may be implemented simply as arrays of
the appropriate integral data type, consisting of a sequence of code units lined
up one immediately after the other.

• A single Unicode string must contain only code units from a single Unicode
encoding form. It is not permissible to mix forms within a string.

D81 Unicode 8-bit string: A Unicode string containing only UTF-8 code units.

D82 Unicode 16-bit string: A Unicode string containing only UTF-16 code units.

D83 Unicode 32-bit string: A Unicode string containing only UTF-32 code units.

D84 Ill-formed: A Unicode code unit sequence that purports to be in a Unicode encoding
form is called ill-formed if and only if it does not follow the specification of that Uni-
code encoding form.

• Any code unit sequence that would correspond to a code point outside the
defined range of Unicode scalar values would, for example, be ill-formed.

• UTF-8 has some strong constraints on the possible byte ranges for leading and
trailing bytes. A violation of those constraints would produce a code unit
sequence that could not be mapped to a Unicode scalar value, resulting in an
ill-formed code unit sequence.

D85 Well-formed: A Unicode code unit sequence that purports to be in a Unicode encod-
ing form is called well-formed if and only if it does follow the specification of that
Unicode encoding form.

• A Unicode code unit sequence that consists entirely of a sequence of well-
formed Unicode code unit sequences (all of the same Unicode encoding form)
is itself a well-formed Unicode code unit sequence.

D86 Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit sequence
of UTF-8 code units.
D87 Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit sequence
of UTF-16 code units.

D88 Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit sequence
of UTF-32 code units.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.9 Unicode Encoding Forms 101

D89 In a Unicode encoding form: A Unicode string is said to be in a particular Unicode
encoding form if and only if it consists of a well-formed Unicode code unit sequence
of that Unicode encoding form.

• A Unicode string consisting of a well-formed UTF-8 code unit sequence is said
to be in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a
UTF-8 string for short.

• A Unicode string consisting of a well-formed UTF-16 code unit sequence is said
to be in UTF-16. Such a Unicode string is referred to as a valid UTF-16 string,
or a UTF-16 string for short.

• A Unicode string consisting of a well-formed UTF-32 code unit sequence is said
to be in UTF-32. Such a Unicode string is referred to as a valid UTF-32 string,
or a UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all conditions.
This is equivalent to saying that a particular Unicode string need not be in a Unicode
encoding form.

• For example, it is perfectly reasonable to talk about an operation that takes the
two Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which
contains an ill-formed UTF-16 code unit sequence, and concatenates them to
form another Unicode string <004D D800 DF02 004D>, which contains a well-
formed UTF-16 code unit sequence. The first two Unicode strings are not in
UTF-16, but the resultant Unicode string is.

• As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit
string, but does not consist of a well-formed UTF-8 code unit sequence. That
code unit sequence could not result from the specification of the UTF-8 encod-
ing form and is thus ill-formed. (The same code unit sequence could, of course,
be well-formed in the context of some other character encoding standard using
8-bit code units, such as ISO/IEC 8859-1, or vendor code pages.)

If a Unicode string purports to be in a Unicode encoding form, then it must contain only a
well-formed code unit sequence. If there is an ill-formed code unit sequence in a source
Unicode string, then a conformant process that verifies that the Unicode string is in a Uni-
code encoding form must reject the ill-formed code unit sequence. (See conformance
clause C9.) For more information, see Section 2.7, Unicode Strings.

Table 3-4 gives examples that summarize the three Unicode encoding forms.
Table 3-4. Examples of Unicode Encoding Forms

Code Point Encoding Form Code Unit Sequence

U+004D UTF-32 0000004D

UTF-16 004D

UTF-8 4D

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

102 Conformance

UTF-32

D90 UTF-32 encoding form: The Unicode encoding form that assigns each Unicode scalar
value to a single unsigned 32-bit code unit with the same numeric value as the Uni-
code scalar value.

• In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <0000004D 00000430 00004E8C 00010302>.

• Because surrogate code points are not included in the set of Unicode scalar val-
ues, UTF-32 code units in the range 0000D80016..0000DFFF16 are ill-formed.

• Any UTF-32 code unit greater than 0010FFFF16 is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form defined in
ISO/IEC 10646, see Section C.2, Encoding Forms in ISO/IEC 10646.

UTF-16

D91 UTF-16 encoding form: The Unicode encoding form that assigns each Unicode scalar
value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a single unsigned
16-bit code unit with the same numeric value as the Unicode scalar value, and that
assigns each Unicode scalar value in the range U+10000..U+10FFFF to a surrogate
pair, according to Table 3-5.

• In UTF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to

U+0430 UTF-32 00000430

UTF-16 0430

UTF-8 D0 B0

U+4E8C UTF-32 00004E8C

UTF-16 4E8C

UTF-8 E4 BA 8C

U+10302 UTF-32 00010302

UTF-16 D800 DF02

UTF-8 F0 90 8C 82

Table 3-4. Examples of Unicode Encoding Forms (Continued)

Code Point Encoding Form Code Unit Sequence
U+10302.

• Because surrogate code points are not Unicode scalar values, isolated UTF-16
code units in the range D80016..DFFF16 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for Uni-
code scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs. Calcula-
tion of the surrogate pair values involves subtraction of 1000016, to account for the starting

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.9 Unicode Encoding Forms 103

offset to the scalar value. ISO/IEC 10646 specifies an equivalent UTF-16 encoding form.
For details, see Section C.3, UCS Transformation Formats.

Table 3-5. UTF-16 Bit Distribution

Scalar Value UTF-16

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

000uuuuuxxxxxxxxxxxxxxxx 110110wwwwxxxxxx 110111xxxxxxxxxx

Note: wwww = uuuuu - 1

UTF-8

D92 UTF-8 encoding form: The Unicode encoding form that assigns each Unicode scalar
value to an unsigned byte sequence of one to four bytes in length, as specified in
Table 3-6.

• In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <4D D0 B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D,
<D0 B0> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and
<F0 90 8C 82> corresponds to U+10302.

• Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is
ill-formed.

• Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”
byte sequences in UTF-8 were those where BMP characters could be repre-
sented in more than one way. These sequences are ill-formed, because they are
not allowed by Table 3-7.

• Because surrogate code points are not Unicode scalar values, any UTF-8 byte
sequence that would otherwise map to code points D800..DFFF is ill-formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of
Unicode scalar values corresponding to one-, two-, three-, and four-byte sequences. For a
discussion of the difference in the formulation of UTF-8 in ISO/IEC 10646, see Section C.3,
UCS Transformation Formats.

Table 3-6. UTF-8 Bit Distribution
Scalar Value First Byte Second Byte Third Byte Fourth Byte

00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

104 Conformance

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte val-
ues such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-formed in that
position. Any byte value outside of the ranges listed is ill-formed. For example:

• The byte sequence <C0 AF> is ill-formed, because C0 is not well-formed in the
“First Byte” column.

• The byte sequence <E0 9F 80> is ill-formed, because in the row where E0 is
well-formed as a first byte, 9F is not well-formed as a second byte.

• The byte sequence <F4 80 83 92> is well-formed, because every byte in that
sequence matches a byte range in a row of the table (the last row).

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

In Table 3-7, cases where a trailing byte range is not 80..BF are shown in bold italic to draw
attention to them. These exceptions to the general pattern occur only in the second byte of
a sequence.

As a consequence of the well-formedness conditions specified in Table 3-7, the following
byte values are disallowed in UTF-8: C0–C1, F5–FF.

Encoding Form Conversion

D93 Encoding form conversion: A conversion defined directly between the code unit
sequences of one Unicode encoding form and the code unit sequences of another
Unicode encoding form.
• In implementations of the Unicode Standard, a typical API will logically convert
the input code unit sequence into Unicode scalar values (code points) and then
convert those Unicode scalar values into the output code unit sequence. Proper
analysis of the encoding forms makes it possible to convert the code units
directly, thereby obtaining the same results but with a more efficient process.

• A conformant encoding form conversion will treat any ill-formed code unit
sequence as an error condition. (See conformance clause C10.) This guarantees
that it will neither interpret nor emit an ill-formed code unit sequence. Any

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.10 Unicode Encoding Schemes 105

implementation of encoding form conversion must take this requirement into
account, because an encoding form conversion implicitly involves a verification
that the Unicode strings being converted do, in fact, contain well-formed code
unit sequences.

3.10 Unicode Encoding Schemes
D94 Unicode encoding scheme: A specified byte serialization for a Unicode encoding

form, including the specification of the handling of a byte order mark (BOM), if
allowed.

• For historical reasons, the Unicode encoding schemes are also referred to as
Unicode (or UCS) transformation formats (UTF). That term is, however, ambig-
uous between its usage for encoding forms and encoding schemes.

The Unicode Standard supports seven encoding schemes. This section presents the formal
definition of each of these encoding schemes.

D95 UTF-8 encoding scheme: The Unicode encoding scheme that serializes a UTF-8 code
unit sequence in exactly the same order as the code unit sequence itself.

• In the UTF-8 encoding scheme, the UTF-8 code unit sequence <4D D0 B0 E4
BA 8C F0 90 8C 82> is serialized as <4D D0 B0 E4 BA 8C F0 90 8C 82>.

• Because the UTF-8 encoding form already deals in ordered byte sequences, the
UTF-8 encoding scheme is trivial. The byte ordering is already obvious and
completely defined by the UTF-8 code unit sequence itself. The UTF-8 encod-
ing scheme is defined merely for completeness of the Unicode character encod-
ing model.

• While there is obviously no need for a byte order signature when using UTF-8,
there are occasions when processes convert UTF-16 or UTF-32 data containing
a byte order mark into UTF-8. When represented in UTF-8, the byte order
mark turns into the byte sequence <EF BB BF>. Its usage at the beginning of a
UTF-8 data stream is neither required nor recommended by the Unicode Stan-
dard, but its presence does not affect conformance to the UTF-8 encoding
scheme. Identification of the <EF BB BF> byte sequence at the beginning of a
data stream can, however, be taken as a near-certain indication that the data

stream is using the UTF-8 encoding scheme.

D96 UTF-16BE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in big-endian format.

• In UTF-16BE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <00 4D 04 30 4E 8C D8 00 DF 02>.

• In UTF-16BE, an initial byte sequence <FE FF> is interpreted as U+FEFF zero

width no-break space.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

106 Conformance

D97 UTF-16LE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in little-endian format.

• In UTF-16LE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <4D 00 30 04 8C 4E 00 D8 02 DF>.

• In UTF-16LE, an initial byte sequence <FF FE> is interpreted as U+FEFF zero

width no-break space.

D98 UTF-16 encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-16 encoding scheme, the UTF-16 code unit sequence <004D 0430
4E8C D800 DF02> is serialized as <FE FF 00 4D 04 30 4E 8C D8 00 DF 02> or
<FF FE 4D 00 30 04 8C 4E 00 D8 02 DF> or <00 4D 04 30 4E 8C D8 00 DF 02>.

• In the UTF-16 encoding scheme, an initial byte sequence corresponding to
U+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <FE FF> indicates big-endian
order, and an initial byte sequence <FF FE> indicates little-endian order. The
BOM is not considered part of the content of the text.

• The UTF-16 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-16 encoding scheme is big-endian.

Table 3-8 gives examples that summarize the three Unicode encoding schemes for the UTF-
16 encoding form.

Table 3-8. Summary of UTF-16BE, UTF-16LE, and UTF-16

Code Unit Sequence Encoding Scheme Byte Sequence(s)

004D UTF-16BE 00 4D

UTF-16LE 4D 00

UTF-16 FE FF 00 4D
FF FE 4D 00
00 4D

0430 UTF-16BE 04 30

UTF-16LE 30 04

UTF-16 FE FF 04 30
FF FE 30 04

04 30

4E8C UTF-16BE 4E 8C

UTF-16LE 8C 4E

UTF-16 FE FF 4E 8C
FF FE 8C 4E
4E 8C

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.10 Unicode Encoding Schemes 107

D99 UTF-32BE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in big-endian format.

• In UTF-32BE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C
00010302> is serialized as <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In UTF-32BE, an initial byte sequence <00 00 FE FF> is interpreted as U+FEFF
zero width no-break space.

D100 UTF-32LE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in little-endian format.

• In UTF-32LE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C
00010302> is serialized as <4D 00 00 00 30 04 00 00 8C 4E 00 00 02 03 01 00>.

• In UTF-32LE, an initial byte sequence <FF FE 00 00> is interpreted as U+FEFF
zero width no-break space.

D101 UTF-32 encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-32 encoding scheme, the UTF-32 code unit sequence <0000004D
00000430 00004E8C 00010302> is serialized as <00 00 FE FF 00 00 00 4D 00 00
04 30 00 00 4E 8C 00 01 03 02> or <FF FE 00 00 4D 00 00 00 30 04 00 00 8C 4E
00 00 02 03 01 00> or <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In the UTF-32 encoding scheme, an initial byte sequence corresponding to
U+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <00 00 FE FF> indicates big-
endian order, and an initial byte sequence <FF FE 00 00> indicates little-endian
order. The BOM is not considered part of the content of the text.

• The UTF-32 encoding scheme may or may not begin with a BOM. However,

D800 DF02 UTF-16BE D8 00 DF 02

UTF-16LE 00 D8 02 DF

UTF-16 FE FF D8 00 DF 02
FF FE 00 D8 02 DF
D8 00 DF 02

Table 3-8. Summary of UTF-16BE, UTF-16LE, and UTF-16 (Continued)

Code Unit Sequence Encoding Scheme Byte Sequence(s)
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-32 encoding scheme is big-endian.

Table 3-9 gives examples that summarize the three Unicode encoding schemes for the UTF-
32 encoding form.

The terms UTF-8, UTF-16, and UTF-32, when used unqualified, are ambiguous between
their sense as Unicode encoding forms or Unicode encoding schemes. For UTF-8, this
ambiguity is usually innocuous, because the UTF-8 encoding scheme is trivially derived

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

Table 3-9. Summary of UTF-32BE, UTF-32LE, and UTF-32

Code Unit Sequence Encoding Scheme Byte Sequence(s)

0000004D UTF-32BE 00 00 00 4D

UTF-32LE 4D 00 00 00

UTF-32 00 00 FE FF 00 00 00 4D
FF FE 00 00 4D 00 00 00
00 00 00 4D

00000430 UTF-32BE 00 00 04 30

UTF-32LE 30 04 00 00

UTF-32 00 00 FE FF 00 00 04 30
FF FE 00 00 30 04 00 00
00 00 04 30

00004E8C UTF-32BE 00 00 4E 8C

UTF-32LE 8C 4E 00 00

UTF-32 00 00 FE FF 00 00 4E 8C
FF FE 00 00 8C 4E 00 00
00 00 4E 8C

00010302 UTF-32BE 00 01 03 02

UTF-32LE 02 03 01 00

UTF-32 00 00 FE FF 00 01 03 02
FF FE 00 00 02 03 01 00
00 01 03 02

108 Conformance

from the byte sequences defined for the UTF-8 encoding form. However, for UTF-16 and
UTF-32, the ambiguity is more problematical. As encoding forms, UTF-16 and UTF-32
refer to code units in memory; there is no associated byte orientation, and a BOM is never
used. As encoding schemes, UTF-16 and UTF-32 refer to serialized bytes, as for streaming
data or in files; they may have either byte orientation, and a BOM may be present.

When the usage of the short terms “UTF-16” or “UTF-32” might be misinterpreted, and
where a distinction between their use as referring to Unicode encoding forms or to Uni-
code encoding schemes is important, the full terms, as defined in this chapter of the Uni-
code Standard, should be used. For example, use UTF-16 encoding form or UTF-16
encoding scheme. These terms may also be abbreviated to UTF-16 CEF or UTF-16 CES,
respectively.

When converting between different encoding schemes, extreme care must be taken in han-
dling any initial byte order marks. For example, if one converted a UTF-16 byte serializa-

tion with an initial byte order mark to a UTF-8 byte serialization, thereby converting the
byte order mark to <EF BB BF> in the UTF-8 form, the <EF BB BF> would now be ambig-
uous as to its status as a byte order mark (from its source) or as an initial zero width no-
break space. If the UTF-8 byte serialization were then converted to UTF-16BE and the ini-
tial <EF BB BF> were converted to <FE FF>, the interpretation of the U+FEFF character
would have been modified by the conversion. This would be nonconformant behavior
according to conformance clause C7, because the change between byte serializations would
have resulted in modification of the interpretation of the text. This is one reason why the

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.11 Canonical Ordering Behavior 109

use of the initial byte sequence <EF BB BF> as a signature on UTF-8 byte sequences is not
recommended by the Unicode Standard.

3.11 Canonical Ordering Behavior
This section provides a formal statement of canonical ordering behavior, which deter-
mines, for the purposes of interpretation, which combining character sequences are to be
considered equivalent. A precise definition of equivalence is required so that text contain-
ing combining character sequences can be created and interchanged in a predictable way.

When combining sequences contain multiple combining characters, different sequences
can contain the same characters, but in a different order. Under certain circumstances two
such sequences may be equivalent, even though they differ in the order of the combining
characters.

Canonical ordering is a process of specifying a defined order for sequences of combining
marks, whereby it is possible to determine definitively which sequences are equivalent and
which are not.

Canonical ordering behavior—and more specifically, canonical ordering—is a required part
of the normative specification of normalization for the Unicode Standard. See Unicode
Standard Annex #15, “Unicode Normalization Forms.”

Canonical ordering is also a required part of the separate specification, Unicode Technical
Standard #10, “Unicode Collation Algorithm.”

Application of Combining Marks

A number of principles in the Unicode Standard relate to the application of combining
marks. These principles are listed in this section, with an indication of which are consid-
ered to be normative and which are considered to be guidelines.

In particular, guidelines for rendering of combining marks in conjunction with other
characers should be considered as appropriate for defining default rendering behavior, in
the absence of more specific information about rendering. It is often the case that combin-
ing marks in complex scripts or even particular, general-use nonspacing marks will have
rendering requirements that depart significantly from the general guidelines. Rendering
processes should, as appropriate, make use of available information about specific typo-

graphic practices and conventions so as to produce best rendering of text.

To help in the clarification of the principles regarding the application of combining marks,
a distinction is made between dependence and graphical application.

D102 Dependence: A combining mark is said to depend on its associated base character.

• The associated base character is the base character in the combining character
sequence that a combining mark is part of.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

110 Conformance

• A combining mark in a defective combining character sequence has no associ-
ated base character and thus cannot be said to depend on any particular base
character. This is one of the reasons why fallback processing is required for
defective combining character sequences.

• Dependence concerns all combining marks, including spacing marks and com-
bining marks that have no visible display.

D103 Graphical application: A nonspacing mark is said to apply to its associated grapheme
base.

• The associated grapheme base is the grapheme base in the grapheme cluster
that a nonspacing mark is part of.

• A nonspacing mark in a defective combining character sequence is not part of a
grapheme cluster and is subject to the same kinds of fallback processing as for
any defective combining character sequence.

• Graphic application concerns visual rendering issues and thus is an issue for
nonspacing marks that have visible glyphs. Those glyphs interact, in rendering,
with their grapheme base.

Throughout the text of the standard, whenever the situation is clear, discussion of combin-
ing marks often simply talks about combining marks “applying” to their base. In the proto-
typical case of a nonspacing accent mark applying to a single base character letter, this
simplification is not problematical, because the nonspacing mark both depends (notion-
ally) on its base character and simultaneously applies (graphically) to its grapheme base,
affecting its display. The finer distinctions are needed when dealing with the edge cases,
such as combining marks that have no display glyph, graphical application of nonspacing
marks to Korean syllables, and the behavior of spacing combining marks.

The distinction made here between notional dependence and graphical application does
not preclude spacing marks or even sequences of base characters from having effects on
neighboring characters in rendering. Thus spacing forms of dependent vowels (matras) in
Indic scripts may trigger particular kinds of conjunct formation or may be repositioned in
ways that influence the rendering of other characters. (See Chapter 9, South Asian Scripts-I,
for many examples.) Similarly, sequences of base characters may form ligatures in render-
ing. (See “Cursive Connection and Ligatures” in Section 16.2, Layout Controls.)

The following listing specifies the principles regarding application of combining marks.
Many of these principles are illustrated in Section 2.11, Combining Characters, and

Section 7.9, Combining Marks.

P1 [Normative] Combining character order: Combining characters follow the base
character on which they depend.

• This principle follows from the definition of a combining character sequence.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.11 Canonical Ordering Behavior 111

• Thus the character sequence <U+0061 “a” latin small letter a, U+0308 “!”
combining diaeresis, U+0075 “u” latin small letter u> is unambiguously
interpreted (and displayed) as “äu”, not “aü”. See Figure 2-18.

P2 [Guideline] Inside-out application. Nonspacing marks with the same combining
class are generally positioned graphically outward from the grapheme base to
which they apply.

• The most numerous and important instances of this principle involve nonspac-
ing marks applied either directly above or below a grapheme base. See
Figure 2-21.

• In a sequence of two nonspacing marks above a grapheme base, the first
nonspacing mark is placed directly above the grapheme base, and the second is
then placed above the first nonspacing mark.

• In a sequence of two nonspacing marks below a grapheme base, the first
nonspacing mark is placed directly below the grapheme base, and the second is
then placed below the first nonspacing mark.

• This rendering behavior for nonspacing marks can be generalized to sequences
of any length, although practical considerations usually limit such sequences to
no more than two or three marks above and/or below a grapheme base.

• The principle of inside-out application is also referred to as default stacking
behavior for nonspacing marks.

P3 [Guideline] Side-by-side application. Notwithstanding the principle of inside-out
application, some specific nonspacing marks may override the default stacking
behavior and are positioned side-by-side over (or under) a grapheme base, rather
than stacking vertically.

• Such side-by-side positioning may reflect language-specific orthographic rules,
such as for Vietnamese diacritics and tone marks or for polytonic Greek breath-
ing and accent marks. See Table 2-6.

• When positioned side-by-side, the visual rendering order of a sequence of
nonspacing marks reflects the dominant order of the script with which they are
used. Thus, in Greek, the first nonspacing mark in such a sequence will be posi-
tioned to the left side above a grapheme base, and the second to the right side
above the grapheme base. In Hebrew, the opposite positioning is used for side-

by-side placement.

P4 [Guideline] Traditional typographical behavior will sometimes override the
default placement or rendering of nonspacing marks.

• Because of typographical conflict with the descender of a base character, a com-
bining comma below placed on a lowercase “g” is traditionally rendered as if it
were an inverted comma above. See Figure 7-1.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

112 Conformance

• Because of typographical conflict with the ascender of a base chracter, a com-
bining há`ek (caron) is traditionally rendered as an apostrophe when placed,
for example, on a lowercase “d”. See Figure 7-1.

• The relative placement of vowel marks in Arabic cannot be predicted by default
stacking behavior alone, but depends on traditional rules of Arabic typography.
See Figure 8-5.

P5 [Normative] Nondistinct order. Nonspacing marks with different, non-zero com-
bining classes may occur in different orders without affecting either the visual dis-
play of a combining character sequence or the interpretation of that sequence.

• For example, if one nonspacing mark occurs above a grapheme base and
another nonspacing mark occurs below it, they will have distinct combining
classes. The order in which they occur in the combining character sequence
does not matter for the display or interpretation of the resulting grapheme clus-
ter.

• Inserting a combining grapheme joiner between two combining marks with
nondistinct order prevents their canonical reordering. For more information,
see “Combining Grapheme Joiner” in Section 16.2, Layout Controls.

• The introduction of the combining class for characters and its use in canonical
ordering in the standard is to precisely define canonical equivalence and
thereby clarify exactly which such alternate sequences must be considered as
identical for display and interpretation. See Figure 2-24.

• In cases of nondistinct order, the order of combining marks has no linguistic
significance. The order does not reflect how “closely bound” they are to the
base. After canonical reordering, the order may no longer reflect the typed-in
sequence. Rendering systems should be prepared to deal with common typed-in
sequences and with canonically reordered sequences. See Table 5-3.

P6 [Guideline] Enclosing marks surround their grapheme base and any intervening
nonspacing marks.

• This implies that enclosing marks successively surround previous enclosing
marks. See Figure 3-1.

Figure 3-1. Enclosing Marks
a + @ + @ + @¨ ä
09A4 20DE 0308 20DD

• Dynamic application of enclosing marks—particularly sequences of enclosing
marks—is beyond the capability of most fonts and simple rendering processes.
It is not unexpected to find fallback rendering in cases such as that illustrated in
Figure 3-1.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.11 Canonical Ordering Behavior 113

P7 [Guideline] Double diacritic nonspacing marks, such as U+0360 combining dou-

ble tilde, apply to their grapheme base, but are intended to be rendered with
glyphs that encompass a following grapheme base as well.

Because such double diacritic display spans combinations of elements
that would otherwise be considered grapheme clusters, the support of
double diacritics in rendering may involve special handling for cursor
placement and text selection. See Figure 7-8 for an example.

P8 [Guideline] When double diacritic nonspacing marks interact with normal
nonspacing marks in a grapheme cluster, they “float” to the outermost layer of the
stack of rendered marks (either above or below).

• This behavior can be conceived of as a kind of looser binding of such double
diacritics to their bases. In effect, all other nonspacing marks are applied first,
and then the double diacritic will span the resulting stacks. See Figure 7-9 for an
example.

• Double diacritic nonspacing marks are also given a very high combining class,
so that in canonical order they appear at or near the end of any combining
character sequence. Figure 7-10 shows an example of the use of CGJ to block
this reordering.

• The interaction of enclosing marks and double diacritics is not well defined
graphically. It is unlikely that most fonts or rendering processes could handle
combinations of these marks felicitously. It is not recommended to use combi-
nations of these together in the same grapheme cluster.

P9 [Guideline] When a nonspacing mark is applied to the letters i and j or any other
character with the Soft_Dotted property, the inherent dot on the base character is
suppressed in display.

• See Figure 7-2 for an example.

• For languages such as Lithuanian, in which both a dot and an accent must be
displayed, use U+0307 combining dot above. For guidelines in handling this
situation in case mapping, see Section 5.18, Case Mappings.

Combining Marks and Korean Syllables. When a grapheme cluster comprises a Korean
syllable, a combining mark applies to that entire syllable. For example, in the following
sequence the grave is applied to the entire Korean syllable, not just to the last jamo:
U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+0300 & grave →
(

If the combining mark in question is an enclosing combining mark, then it would enclose
the entire Korean syllable, rather than the last jamo in it:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+20DD %
enclosing circle →)

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

114 Conformance

This treatment of the application of combining marks with respect to Korean syllables fol-
lows from the implications of canonical equivalence. It should be noted, however, that
older implementations may have supported the application of an enclosing combining
mark to an entire Indic consonant conjunct or to a sequence of grapheme clusters linked
together by combining grapheme joiners. Such an approach has a number of technical
problems and leads to interoperability defects, so it is strongly recommended that imple-
mentations do not follow it.

For more information on the recommended use of the combining grapheme joiner, see the
subsection “Combining Grapheme Joiner” in Section 16.2, Layout Controls. For more dis-
cussion regarding the application of combining marks in general, see Section 7.9, Combin-
ing Marks.

Combining Classes

Each character in the Unicode Standard has a combining class associated with it. The com-
bining class is a numerical value used by the Canonical Ordering Algorithm to determine
which sequences of combining marks are to be considered canonically equivalent and
which are not. Canonical equivalence is the criterion used to determine whether two alter-
nate sequences are considered identical for interpretation.

D104 Combining class: A numeric value in the range 0..255 given to each Unicode code
point, formally defined as the property Canonical_Combining_Class.

• The combining class for each encoded character in the standard is specified in
the file UnicodeData.txt in the Unicode Character Database. Any code point
not listed in that data file defaults to \p{Canonical_Combining_Class = 0} (or
\p{ccc = 0} for short).

• An extracted listing of combining classes, sorted by numeric value, is provided
in the file DerivedCombiningClass.txt in the Unicode Character Database.

• Only combining marks have a combining class other than zero. Almost all com-
bining marks with a class other than zero are also nonspacing marks, with a few
exceptions. Also, not all nonspacing marks have a non-zero combining class.
Thus, while the correlation between ^\p{ccc=0] and \p{gc=Mn} is close, it is
not exact, and implementations should not depend on the two concepts being
identical.

D105 Fixed position class: A subset of the range of numeric values for combining classes—

specifically, any value in the range 10..199.

• Fixed position classes are assigned to a small number of Hebrew, Arabic, Syriac,
Telugu, Thai, Lao, and Tibetan combining marks whose positions were con-
ceived of as occurring in a fixed position with respect to their grapheme base,
regardless of any other combining mark that might also apply to the grapheme
base.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.11 Canonical Ordering Behavior 115

• Not all Arabic vowel points or Indic matras are given fixed position classes. The
existence of fixed position classes in the standard is an historical artifact of an
earlier stage in its development, prior to the formal standardization of the Uni-
code Normalization Forms.

D106 Typographic interaction: Graphical application of one nonspacing mark in a position
relative to a grapheme base that is already occupied by another nonspacing mark, so
that some rendering adjustment must be done (such as default stacking or side-by-
side placement) to avoid illegible overprinting or crashing of glyphs.

The assignment of combining class values for Unicode characters was originally done with
the goal in mind of defining distinct numeric values for each group of nonspacing marks
that would typographically interact. Thus all generic nonspacing marks above are given the
value \p{ccc=230}, while all generic nonspacing marks below are given the value
\p{ccc=220}. Smaller numbers of nonspacing marks that tend to sit on one “shoulder” or
another of a grapheme base, or that may actually be attached to the grapheme base itself
when applied, have their own combining classes.

When assigned this way, canonical ordering assures that, in general, alternate sequences of
combining characters that typographically interact will not be canonically equivalent,
whereas alternate sequences of combining characters that do not typographically interact
will be canonically equivalent.

This is roughly correct for the normal cases of detached, generic nonspacing marks placed
above and below base letters. However, the ramifications of complex rendering for many
scripts ensure that there are always some edge cases involving typographic interaction
between combining marks of distinct combining classes. This has turned out to be particu-
larly true for some of the fixed position classes for Hebrew and Arabic, for which a distinct
combining class is no guarantee that there will be no typographic interaction for rendering.

Because of these considerations, particular combining class values should be taken only as
a guideline regarding issues of typographic interaction of combining marks.

The only normative use of combining class values is as input to the Canonical Ordering
Algorithm, where they are used to normatively distinguish between sequences of combin-
ing marks that are canonically equivalent and those that are not.

Canonical Ordering

The canonical ordering of a decomposed character sequence results from a sorting process

that acts on each sequence of combining characters according to their combining class. The
canonical order of character sequences does not imply any kind of linguistic correctness or
linguistic preference for ordering of combining marks in sequences. See the information on
rendering combining marks in Section 5.13, Rendering Nonspacing Marks, for more infor-
mation. Characters with combining class zero are never reordered relative to other charac-
ters, so the amount of work in the algorithm depends on the number of non-class-zero
characters in a row. An implementation of this algorithm will be extremely fast for typical
text.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

116 Conformance

The algorithm described here represents a logical description of the process. Optimized
algorithms can be used in implementations as long as they are equivalent—that is, as long
as they produce the same result. This algorithm is not tailorable; higher-level protocols
shall not specify different results.

More explicitly, the canonical ordering of a decomposed character sequence D results from
the following algorithm.

R1 For each character x in D, let p(x) be the combining class of x.

R2 Whenever any pair (A, B) of adjacent characters in D is such that
p(B) ‡ 0 & p(A) > p(B), exchange those characters.

R3 Repeat R2 until no exchanges can be made among any of the characters in D.

Sample combining classes for this discussion are listed in Table 3-10.

Table 3-10. Sample Combining Classes

Combining
Class

Abbreviation Code Unicode Name

0 a U+0061 latin small letter a

220 underdot U+0323 combining dot below

230 diaeresis U+0308 combining diaeresis

230 breve U+0306 combining breve

0 a-underdot U+1EA1 latin small letter a with dot below

0 a-diaeresis U+00E4 latin small letter a with diaeresis

0 a-breve U+0103 latin small letter a with breve

Because underdot has a lower combining class than diaeresis, the algorithm will return the
a, then the underdot, then the diaeresis. The sequence a + underdot + diaeresis is already in
the final order, so it is not rearranged by the algorithm. The sequence in the opposite order,
a + diaeresis + underdot, is rearranged by the algorithm.

a + underdot + diaeresis í a + underdot + diaeresis

a + diaeresis + underdot í a + underdot + diaeresis

However, because diaeresis and breve have the same combining class (because they interact
typographically), they are not rearranged.

a + breve + diaeresis õ a + diaeresis + breve
a + diaeresis + breve õ a + breve + diaeresis

Applying the algorithm gives the results shown in Table 3-11.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

Table 3-11. Canonical Ordering Results

Original Decompose Sort Result

a-diaeresis + underdot a + diaeresis + underdot a + underdot + diaeresis a + underdot + diaeresis

a + diaeresis + underdot a + underdot + diaeresis a + underdot + diaeresis

a + underdot + diaeresis a + underdot + diaeresis

a-underdot + diaeresis a + underdot + diaeresis a + underdot + diaeresis

a-diaeresis + breve a + diaeresis + breve a + diaeresis + breve

a + diaeresis + breve a + diaeresis + breve

a + breve + diaeresis a + breve + diaeresis

a-breve + diaeresis a + breve + diaeresis a + breve + diaeresis

3.12 Conjoining Jamo Behavior 117

3.12 Conjoining Jamo Behavior
The Unicode Standard contains both a large set of precomposed modern Hangul syllables
and a set of conjoining Hangul jamo, which can be used to encode archaic Korean syllable
blocks as well as modern Korean syllable blocks. This section describes how to

• Determine the syllable boundaries in a sequence of conjoining jamo characters.

• Compose jamo characters into precomposed Hangul syllables.

• Determine the canonical decomposition of precomposed Hangul syllables.

• Algorithmically determine the names of precomposed Hangul syllables.

For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in
Section 12.6, Hangul. Hangul syllables are a special case of grapheme clusters.

Definitions

The following definitions use the Hangul_Syllable_Type property, which is defined in the
UCD file HangulSyllableType.txt.

D107 Leading consonant: A character with the Hangul_Syllable_Type property value
Leading_Jamo. Abbreviated as L.

• When not occurring in clusters, the term leading consonant is equivalent to syl-
lable-initial character.
D108 Choseong: A sequence of one or more leading consonants.

• In Modern Korean, a choseong consists of a single jamo. In Old Korean, a
sequence of more than one leading consonant may occur.

• Equivalent to syllable-initial cluster.

D109 Choseong filler: U+115F hangul choseong filler. Abbreviated as Lf.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

118 Conformance

• A choseong filler stands in for a missing choseong to make a well-formed Korean
syllable.

D110 Vowel: A character with the Hangul_Syllable_Type property value Vowel_Jamo.
Abbreviated as V.

• When not occurring in clusters, the term vowel is equivalent to syllable-peak
character.

D111 Jungseong: A sequence of one or more vowels.

• In Modern Korean, a jungseong consists of a single jamo. In Old Korean, a
sequence of more than one vowel may occur.

• Equivalent to syllable-peak cluster.

D112 Jungseong filler: U+1160 hangul jungseong filler. Abbreviated as Vf.

• A jungseong filler stands in for a missing jungseong to make a well-formed
Korean syllable.

D113 Trailing consonant: A character with the Hangul_Syllable_Type property value
Trailing_Jamo. Abbreviated as T.

• When not occurring in clusters, the term trailing consonant is equivalent to syl-
lable-final character.

D114 Jongseong: A sequence of one or more trailing consonants.

• In Modern Korean, a jongseong consists of a single jamo. In Old Korean, a
sequence of more than one trailing consonant may occur.

• Equivalent to syllable-final cluster.

D115 LV_Syllable: A character with Hangul_Syllable_Type property value LV_Syllable.
Abbreviated as LV.

• An LV_Syllable is canonically equivalent to a sequence of the form <L V>.

D116 LVT_Syllable: A character with Hangul_Syllable_Type property value LVT_Syllable.
Abbreviated as LVT.

• An LVT_Syllable is canonically equivalent to a sequence of the form <L V T>.

D117 Precomposed Hangul syllable: A character that is either an LV_Syllable or an

LVT_Syllable.

D118 Syllable block: A sequence of Korean characters that should be grouped into a single
square cell for display.

• This is different from a precomposed Hangul syllable and is meant to include
sequences needed for the representation of Old Korean syllables.

• A syllable block may contain a precomposed Hangul syllable plus other charac-
ters.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.12 Conjoining Jamo Behavior 119

Hangul Syllable Boundary Determination

In rendering, a sequence of jamos is displayed as a series of syllable blocks. The following
rules specify how to divide up an arbitrary sequence of jamos (including nonstandard
sequences) into these syllable blocks.

The precomposed Hangul syllables are of two types: LV or LVT. In determining the sylla-
ble boundaries, the LV behave as if they were a sequence of jamo L V, and the LVT behave
as if they were a sequence of jamo L V T.

Within any sequence of characters, a syllable break never occurs between the pairs of char-
acters shown in Table 3-12. In Table 3-12 non-opportunities for syllable breaks are shown
by “×”. Combining marks are shown by the symbol M.

In all cases other than those shown in Table 3-12, a syllable break occurs before and after
any jamo or precomposed Hangul syllable. As for other characters, any combining mark
between two conjoining jamos prevents the jamos from forming a syllable block.

Table 3-12. Hangul Syllable No-Break Rules

Do Not Break Between Examples

L L, V, or precomposed
Hangul syllable

L × L
L × V
L × LV
L × LVT

V or LV V or T V × V
V × T
LV × V
LV × T

T or LVT T T × T
LVT × T

Jamo or precomposed
Hangul syllable

Combining marks L × M
V × M
T × M
LV × M
LVT × M

Even in Normalization Form NFC, a syllable block may contain a precomposed Hangul syl-
lable in the middle. An example is L LVT T. Each well-formed modern Hangul syllable,
however, can be represented in the form L V T? (that is one L, one V and optionally one

T) and consists of a single encoded character in NFC.

For information on the behavior of Hangul compatibility jamo in syllables, see
Section 12.6, Hangul.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

120 Conformance

Standard Korean Syllables

D119 Standard Korean syllable block: A sequence of one or more L followed by a sequence
of one or more V and a sequence of zero or more T, or any other sequence that is
canonically equivalent.

• All precomposed Hangul syllables, which have the form LV or LVT, are stan-
dard Korean syllable blocks.

• Alternatively, a standard Korean syllable block may be expressed as a sequence
of a choseong and a jungseong, optionally followed by a jongseong.

• A choseong filler may substitute for a missing leading consonant, and a jung-
seong filler may substitute for a missing vowel.

Using regular expression notation, a canonically decomposed standard Korean syllable
block is of the following form:

L+ V+ T*
Arbitrary standard Korean syllable blocks have a somewhat more complex form because
they include any canonically equivalent sequence, thus including precomposed Korean syl-
lables. The regular expressions for them have the following form:

(L+ V+ T*) | (L* LV V* T*) | (L* LVT T*)

All standard Korean syllable blocks (without fillers) of the form <L V T> or <L V> have
equivalent, single-character precomposed forms. Such syllables cover the requirements of
modern Korean, but do not provide for syllables that are used in Old Korean.

Using canonically decomposed text may facilitate further processing such as searching and
sorting when dealing with Old Korean data, because the text then consists only of
sequences of jamos (L+ V+ T*), and not mixtures of precomposed Hangul syllables and
jamos.

Transforming into Standard Korean Syllables. A sequence of jamos that do not all match
the regular expression for a standard Korean syllable block can be transformed into a
sequence of standard Korean syllable blocks by the correct insertion of choseong fillers and
jungseong fillers. This transformation of a string of text into standard Korean syllables is
performed by determining the syllable breaks as explained in the earlier subsection
“Hangul Syllable Boundaries,” then inserting one or two fillers as necessary to transform
each syllable into a standard Korean syllable. Thus
L [^V] í L Vf [^V]

[^L] V í [^L] Lf V

[^V] T í [^V] Lf Vf T

where [^X] indicates a character that is not X, or the absence of a character.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.12 Conjoining Jamo Behavior 121

Examples. In Table 3-13, the first row shows syllable breaks in a standard sequence, the sec-
ond row shows syllable breaks in a nonstandard sequence, and the third row shows how the
sequence in the second row could be transformed into standard form by inserting fillers
into each syllable. Syllable breaks are shown by middle dots “·”.

Table 3-13. Korean Syllable Break Examples

No. Sequence Sequence with Syllable Breaks Marked

1 LVTLVLVLVfLfVLfVfT í LVT · LV · LV · LVf · LfV · LfVfT

2 LLTTVVTTVVLLVV í LL · TT · VVTT · VV · LLVV

3 LLTTVVTTVVLLVV í LLVf · LfVfTT · LfVVTT · LfVV · LLVV

Hangul Syllable Composition

The following algorithm describes how to take a sequence of canonically decomposed char-
acters D and compose Hangul syllables. Hangul composition and decomposition are sum-
marized here, but for a more complete description, implementers must consult Unicode
Standard Annex #15, “Unicode Normalization Forms.” Note that, like other non-jamo
characters, any combining mark between two conjoining jamos prevents the jamos from
composing.

First, define the following constants:
SBase = AC0016
LBase = 110016
VBase = 116116
TBase = 11A716
SCount = 11172
LCount = 19
VCount = 21
TCount = 28
NCount = VCount * TCount

1. Iterate through the sequence of characters in D, performing steps 2 through 5.

2. Let i represent the current position in the sequence D. Compute the following
indices, which represent the ordinal number (zero-based) for each of the com-
ponents of a syllable, and the index j, which represents the index of the last
character in the syllable.

LIndex = D[i] - LBase
VIndex = D[i+1] - VBase
TIndex = D[i+2] - TBase
j = i + 2

3. If either of the first two characters is out of bounds (LIndex < 0 OR LIndex ≥
LCount OR VIndex < 0 OR VIndex ≥ VCount), then increment i, return to step
2, and continue from there.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

122 Conformance

4. If the third character is out of bounds (TIndex ≤ 0 or TIndex ≥ TCount), then it
is not part of the syllable. Reset the following:
TIndex = 0
j = i + 1

5. Replace the characters D[i] through D[j] by the Hangul syllable S, and set i to
be j + 1.
S = (LIndex * VCount + VIndex) * TCount + TIndex + SBase

Example. The first three characters are

U+1111 ë hangul choseong phieuph

U+1171 Ò hangul jungseong wi

U+11B6 ∂ hangul jongseong rieul-hieuh

Compute the following indices:
LIndex = 17
VIndex = 16
TIndex = 15

Replace the three characters as follows:
S = [(17 * 21) + 16] * 28 + 15 + SBase

= D4DB16

= L

Hangul Syllable Decomposition

The following algorithm describes the reverse mapping—how to take Hangul syllable S and
derive the canonical decomposition D. This normative mapping for these characters is
equivalent to the canonical mapping in the character charts for other characters.

1. Compute the index of the syllable:
SIndex = S - SBase

2. If SIndex is in the range (0 ≤ SIndex < SCount), then compute the components
as follows:
L = LBase + SIndex / NCount
V = VBase + (SIndex % NCount) / TCount
T = TBase + SIndex % TCount

The operators “/” and “%” are as defined in Table A-3 in Appendix A, Notational

Conventions.

3. If T = TBase, then there is no trailing character, so replace S by the sequence
L V. Otherwise, there is a trailing character, so replace S by the sequence L V T.

Example. Compute the components:
L = LBase + 17
V = VBase + 16
T = TBase + 15

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.13 Default Case Algorithms 123

and replace the syllable by the sequence of components:
D4DB16 → 111116, 117116, 11B616

Hangul Syllable Name Generation

The character names for Hangul syllables are derived from the decomposition by starting
with the string hangul syllable, and appending the short name of each decomposition
component in order. (See Chapter 17, Code Charts, and Jamo.txt in the Unicode Character
Database.) For example, for U+D4DB, derive the decomposition, as shown in the preced-
ing example. It produces the following three-character sequence:

U+1111 hangul choseong phieuph (p)
U+1171 hangul jungseong wi (wi)
U+11B6 hangul jongseong rieul-hieuh (lh)

The character name for U+D4DB is then generated as hangul syllable pwilh, using the
short name as shown in parentheses above. This character name is a normative property of
the character.

3.13 Default Case Algorithms
This section specifies the default algorithms for case conversion, case detection, and case-
less matching. For information about the data sources for case mapping, see Section 4.2,
Case—Normative. For a general discussion of case mapping operations, see Section 5.18,
Case Mappings.

The default casing operations are to be used in the absence of tailoring for particular lan-
guages and environments. Where a particular environment (such as a Turkish locale)
requires tailoring, that can be done without violating conformance.

All of these specifications are logical specifications. Particular implementations can opti-
mize the processes as long as they provide the same results.

Definitions

The full case mappings for Unicode characters are obtained by using the mappings from
SpecialCasing.txt plus the mappings from UnicodeData.txt, excluding any of the latter
mappings that would conflict. Any character that does not have a mapping in these files is

considered to map to itself. The full case mappings of a character C are referred to as
Lowercase_Mapping(C), Titlecase_Mapping(C), and Uppercase_Mapping(C). The full
case folding of a character C is referred to as Case_Folding(C).

Detection of case and case mapping requires more than just the General_Category values
(Lu, Lt, Ll). The following definitions are used:

D120 A character C is defined to be cased if and only if C has the Lowercase or Uppercase
property or has a General_Category value of Titlecase_Letter.

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

124 Conformance

• The Uppercase and Lowercase property values are specified in the data file
DerivedCoreProperties.txt in the Unicode Character Database.

D121 A character C is defined to be case-ignorable if C has the value MidLetter for the
Word_Break property or its General_Category is one of Nonspacing_Mark (Mn),
Enclosing_Mark (Me), Format (Cf), Modifier_Letter (Lm), or Modifier_Symbol
(Sk).

• The Word_Break property is defined in Unicode Standard Annex #29, “Text
Boundaries.”

D122 Case-ignorable sequence: A sequence of zero or more case-ignorable characters.

D123 A character C is in a particular casing context for context-dependent matching if and
only if it matches the corresponding specification in Table 3-14

Table 3-14. Context Specification for Casing

Context Description Regular Expressions

Final_Sigma C is preceded by a sequence consisting
of a cased letter and a case-ignorable
sequence, and C is not followed by a
sequence consisting of a case ignor-
able sequence and then a cased letter.

Before C \p{cased} (\p{case-ignorable})*

After C ! ((\p{case-ignorable})*
\p{cased})

After_Soft_Do
tted

There is a Soft_Dotted character before
C, with no intervening character of
combining class 0 or 230 (Above).

Before C [\p{Soft_Dotted}]
([^\p{ccc=230} \p{ccc=0}])*

More_Above C is followed by a character of combin-
ing class 230 (Above) with no inter-
vening character of combining class 0
or 230 (Above).

After C [^\p{ccc=0}]* [\p{ccc=230}]

Before_Dot C is followed by combining dot
above (U+0307). Any sequence of
characters with a combining class that
is neither 0 nor 230 may intervene
between the current character and the
combining dot above.

After C ([^\p{ccc=230} \p{ccc=0}])*
[\u0307]

After_I There is an uppercase I before C, and
there is no intervening combining
character class 230 (Above) or 0.

Before C [I] ([^\p{ccc=230} \p{ccc=0}])*

.

In Table 3-14, a description of each context is followed by the equivalent regular expres-
sion(s) describing the context before C, the context after C, or both. The regular expres-
sions use the syntax of Unicode Technical Standard #18, “Unicode Regular Expressions,”
with one addition: “!” means that the expression does not match. All of the regular expres-
sions are case-sensitive.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

3.13 Default Case Algorithms 125

Default Case Conversion

The following specify the default case conversion operations for Unicode strings, in the
absence of tailoring. In each instance, there are two variants: simple case conversion and
full case conversion. In the full case conversion, the context-dependent mappings based on
the casing context mentioned earlier must be used.

For a string X:

R1 toUppercase(X): Map each character C in X to Uppercase_Mapping(C).

R2 toLowercase(X): Map each character C in X to Lowercase_Mapping(C).

R3 toTitlecase(X): Find the word boundaries in X according to Unicode Standard
Annex #29, “Text Boundaries.” For each word boundary, find the first cased char-
acter F following the word boundary. If F exists, map F to Titlecase_Mapping(F);
then map all characters C between F and the following word boundary to
Lowercase_Mapping(C).

R4 toCasefold(X): Map each character C in X to Case_Folding(C).

Default Case Detection

The casing status of the string can be determined in accordance with the casing operations
defined earlier. The following definitions provide a specification for determining this sta-
tus. These definitions assume that X and Y are strings and that Y equals toNFD(X). When
case conversion is applied to a string that is decomposed (normalized to NFD), applying
the case conversion character by character does not affect the normalization. Therefore, the
following are specified in terms of Normalization Form NFD.

D124 isLowercase(X): isLowercase(X) is true when toLowercase(Y) = Y.

• For example, isLowercase(“combining mark”) is true, and isLowercase(“Com-
bining mark”) is false.

D125 isUppercase(X): isUppercase(X) is true when toUppercase(Y) = Y.

• For example, isUppercase(“COMBINING MARK”) is true, and isUpper-
case(“Combining mark”) is false.

D126 isTitlecase(X): isTitlecase(X) is true when toTitlecase(Y) = Y.

• For example, isTitlecase(“Combining Mark”) is true, and isTitlecase(“Combin-

ing mark”) is false.

D127 isCasefolded(X): isCasefolded(X) is true when toCasefold(Y) = Y.

• For example, isCasefolded(“heiss”) is true, and isCasefolded(“heiß”) is false.

Uncased characters do not affect the results of casing detection operations such as isLower-
case. Thus a space or a number added to a string does not affect the results. There is a
degenerate case, such as “123”, where the string contains no cased letters and thus isLower-

The Unicode Standard 5.0 – Electronic edition Copyright © 1991–2007 Unicode, Inc.

126 Conformance

case(“123”) evaluates as true. In many situations it may be appropriate for implementa-
tions to also test whether there are any cased characters in the strings. This is accomplished
by testing for (isLowercase(X) AND isCased(X)), using the following definition (D128).

D128 isCased(X): isCased(X) when isLowercase(X) is false, or isUppercase(X) is false, or
isTitlecase(X) is false.

• Any string that is not isCased consists entirely of characters that do not case
map to themselves.

• For example, isCased(“abc”) is true, and isCased(“123”) is false.

The examples in Table 3-15 show that these conditions are not mutually exclusive. “A2” is
both uppercase and titlecase; “3” is uncased, so it is lowercase, uppercase, and titlecase.

Table 3-15. Case Detection Examples

Case Letter Name Alphanumeric Digit

Lowercase a john smith a2 3

Uppercase A JOHN SMITH A2 3

Titlecase A John Smith A2 3

Default Caseless Matching

Default caseless (or case-insensitive) matching is specified by the following:

D129 A string X is a caseless match for a string Y if and only if:
toCasefold(X) = toCasefold(Y)

Caseless matching should also use normalization, which means using one of the following
operations:

D130 A string X is a canonical caseless match for a string Y if and only if:
NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))

D131 A string X is a compatibility caseless match for a string Y if and only if:
NFKD(toCasefold(NFKD(toCasefold(NFD(X))))) =

NFKD(toCasefold(NFKD(toCasefold(NFD(Y)))))

The invocations of normalization before case folding in the preceding definitions are to
catch very infrequent edge cases. Normalization is not required before case folding, except

for the character U+0345 n combining greek ypogegrammeni and any characters that
have it as part of their decomposition, such as U+1FC3 o greek small letter eta with

ypogegrammeni.

In practice, optimized versions of implementations can catch these special cases, thereby
avoiding an extra normalization.

Copyright © 1991-2007, Unicode, Inc. The Unicode Standard 5.0 – Electronic edition

	Purchasing the book
	Conformance
	3.1 Versions of the Unicode Standard
	Stability
	Version Numbering
	Errata and Corrigenda
	References to the Unicode Standard
	Precision in Version Citation
	References to Unicode Character Properties
	References to Unicode Algorithms

	3.2 Conformance Requirements
	Code Points Unassigned to Abstract Characters
	Interpretation
	Modification
	Character Encoding Forms
	Character Encoding Schemes
	Bidirectional Text
	Normalization Forms
	Normative References
	Unicode Algorithms
	Default Casing Algorithms
	Unicode Standard Annexes

	3.3 Semantics
	Definitions
	Character Identity and Semantics

	3.4 Characters and Encoding
	3.5 Properties
	Types of Properties
	Property Values
	Classification of Properties by Their Values
	Normative and Informative Properties
	Context Dependence
	Stability of Properties
	Simple and Derived Properties
	Property Aliases
	Private Use

	3.6 Combination
	3.7 Decomposition
	Compatibility Decomposition
	Canonical Decomposition

	3.8 Surrogates
	3.9 Unicode Encoding Forms
	UTF-32
	UTF-16
	UTF-8
	Encoding Form Conversion

	3.10 Unicode Encoding Schemes
	3.11 Canonical Ordering Behavior
	Application of Combining Marks
	Combining Classes
	Canonical Ordering

	3.12 Conjoining Jamo Behavior
	Definitions
	Hangul Syllable Boundary Determination
	Standard Korean Syllables
	Hangul Syllable Composition
	Hangul Syllable Decomposition
	Hangul Syllable Name Generation

	3.13 Default Case Algorithms
	Definitions
	Default Case Conversion
	Default Case Detection
	Default Caseless Matching

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

