
Time series clustering
D. Barbe, A. Debant, X. Shang
Department of Computer Science

École normale supérieure de Rennes
35170, Bruz

Abstract—Due to its specificity, time series clustering
remains an open problem. Questions like measuring the
difference between two time series and computing means
are indeed crucial if one wants to be insensitive to time
warping. In this paper, we present a survey of main
clustering techniques and discuss about the possibilities to
adapt them to time series. Then we will run experiments
on each of these techniques and try to compare their
performances.

I. INTRODUCTION

The clustering problem is the following: separate a
set of data into homogeneous groups. Such data can
be pictures, user profiles, voice samples, etc. There are
many goals. Clustering data can identify tendencies.
These groups can serve as examples to classify new in-
formations. In general, the goal is to extract informations
from huge sets of data that cannot be examined by hand.

For data being represented as n-dimensional points,
a lot of clustering techniques exist. They all have
their advantages and disadvantages. Some can guess the
number of clusters, others cannot. Some have a high
computational complexity. Some behave poorly on some
instances, whereas others do not.

Time series are a class of data that bring specific
problems. Representing them as n-dimensional point
is not the best way to take into account the temporal
information. Therefore, one can search how to adapt the
existing clustering techniques to time series. The notion
of similarity and dissimilarity is crucial, yet is hard to
define in this case. We give an example to illustrate this
issue. The data is a set of voice samples pronouncing
one word. The goal is to have one cluster for each word.
How should the distance between two samples be defined
to achieve this? Samples can vary in amplitude. But
time-specific variations also occur: pitch, time offset or
pronunciation length. This example highlights the need
of specific tools for studying time series.

In this paper, we start by describing some standard
clustering techniques. Then we discuss time series spe-
cific problems and ad hoc clustering algorithms. Finally,

we detail experiments we ran to compare the different
methods.

II. CLUSTERING

Three methods of clustering will be presented in this
section, which are k-means Clustering, Kernel k-means
Clustering and Kernel Density Estimation Clustering.
These methods are very popular and have been shown
effective in many domains. Furthermore, they are simple
to implement. We describe them three along with the
pros and cons for each.

A. k-means Clustering

k-means clustering is one of the simplest methods of
clustering, and one one the must intuitive. The algorithm
takes a set of n points of dimension d, X = (x1, ...,xn),
and a fixed number of clusters k. It returns a partition
of the points into k clusters.

In other word, the basic idea here is to group all the
points into k sets (clusters) S = {S1, S2, · · · , Sk} with
respect to their distance to the centers of the clusters so
as to minimize the sum of the squared distances within
each cluster. Thus, its objective is to find the value:

arg min
S

k∑
i=1

∑
x∈Si

‖x− ci‖2

where ci is the center of Si.
It proceeds iteratively, starting by randomly choosing

k centers and assigning each point to its nearest center,
thus forming k clusters. Then, until convergence, the
new barycenter of each cluster is computed and the
assignment process is repeated.

A pseudo-code is given in Algorithm I.

B. Kernel k-means Clustering

The k-means algorithm divides a space into k clusters
on the basis of the L2-distance. This performs well for
data which can be separated linearly by a hyperplane.
Otherwise, this distance can be computed in a feature

1: procedure K-MEANS(X, k)
2: n← size(X)
3: # Initial assignment of points
4: assign← initialize(n, k)
5: while not(convergence()) do
6: # Computation of barycenters
7: for i ∈ {1..k} do
8: C[i]← computeCenter(X, assign)
9: end for

10: # New assignment of points
11: for i ∈ {1..n} do
12: assign[i] = nearestCenter(X[i], C)
13: end for
14: end while
15: end procedure

Algorithm I: k-means algorithm.

space, i.e. a transformed space where the linear sepa-
rability assumption holds. To this end, on the basis of
kernel theory [1], we rely on a kernel function which
represents the inner product in the feature space:

K(xi,xj) = Φ(xi) · Φ(xj)

where Φ is a mapping from the input space to the
feature space. The Euclidean distance D(xi, xj) in the
feature space can be computed, without knowing explic-
itly Φ, using the so called distance kernel trick [4]:

D(xi,xj)
2 = ‖Φ(xi)− Φ(xj)‖2

= (Φ(xi)− Φ(xj)) · (Φ(xi)− Φ(xj))
= Φ(xi) · Φ(xi) + Φ(xj) · Φ(xj)
−2Φ(xi) · Φ(xj)

= K(xi,xi) +K(xj,xj)− 2K(xi,xj)

Several different kernels exist, and in our experiments,
a Gaussian kernel is used [2]:

K(xi,xj) = exp

(
−
‖xi − xj‖2

2σ2

)
in which the hyperparameter σ has to be fixed.

Using a kernel function makes the computation of
barycenters in the feature space impossible. However,
in practice, we can always compute the distance from
one point to the center of a cluster using the distance
trick.

Let ci be a centroid in feature space. We can write it
as a combination of data points in feature space:

cj =

n∑
k=1

αjkΦ(xk)

where αjk equals one if xk belongs to the cluster
associated with ci.

Then the distance from xi, which is a data point in
feature space, to the center of a cluster can be computed
as:

‖Φ(xi)− cj‖2= ‖Φ(xi)−
∑n

k=1 αjkΦ(xk)‖2
= K(xi,xi)− 2

∑
k αjkK(xi,xk)

+
∑

h

∑
l αjhαjlK(xh,xl)

C. Kernel Density Estimation Clustering

Both approaches presented above have a particularity:
the number k of clusters is a parameter of the algorithm.
Consequently, it presumes that we already have some
knowledge on the datasets to be analyzed.

Remark: Some methods exist to estimate the num-
ber of clusters automatically for the k-means clustering,
such as the Silhouette method described in [3].

The Kernel Density Estimation Clustering (KDEC) is
a clustering method without this requirement.

KDEC is an iterative algorithm. It starts with a sin-
gle cluster of one point. Then, for each iteration, the
distribution of probability corresponding to the clusters
is computed and if a point is close enough to the
distribution it is added to the current cluster. If none
is found, then an unassigned point is chosen and a new
cluster is built.

The notion of "close enough" is defined by a parameter
p, which denotes the probability threshold.

The probability of being similar to the actual distribu-
tion is computed by representing each point in clusters
by a Gaussian centered on it and of fixed bandwidth σ
that is a parameter of the method. The pseudo-code of
KDEC is shown in Algorithm II.

1: procedure KDEC(X, p, σ)
2: # Initial single cluster with one point
3: clusters← [choosePoint(X)]
4: # Compute the closest point to the distribution
5: while (onePointNotAssigned()) do
6: computeDistribution(clusters, σ)
7: x← closestPointToDistribution()
8: if (probability(x) > p) then
9: add x in currentCluster(clusters)

10: else
11: makeNewCluster(x, clusters)
12: end if
13: end while
14: end procedure

Algorithm II: KDEC algorithm.

Remark: It is not necessary to represent each point
by a Gaussian. Any kernel can be used.

Regarding this method, we can see that the final
number of clusters is not required to make clusters but
an other kind of knowledge is. Parameters p and σ have

a strong influence on the resulting clusters. Finding good
values for them may be a tricky issue.

D. Robust KDE

In practice, the result of KDEC may be greatly in-
fluenced by outliers. We thus try to use a variation of
this approach which is called robust KDE (RKDE) [8]
in order to exhibit robustness to contamination of the
training sample.

RKDE achieves its robustness by combining a tra-
ditional KDE with ideas from classical M-estimation.
Indeed, KDE is sensitive to the presence of outliers as
it is a solution of a least squares problem. To reduce
this effect, we can use M-estimation proposed by [9] to
find a robust sample mean of the Φ(xi)’s. The idea is
to add a robust loss function. Well known examples of
such functions are Huber’s and Hampel’s ρ.

In our implementation, we choose to employ the
Huber’s ρ which is defined as:

ρ(x) =

{
x2/2 if 0 ≤ x ≤ a
ax− a2/2 if a < x

Unlike the quadratic loss, these loss functions’ derivative
φ is bounded. For the Huber’s ρ:

φ(x) =

{
x if 0 ≤ x ≤ a
a if a < x

where a is a parameter.

III. TIME SERIES

We would like now to focus on the clustering of time
series, which is actually the main goal of this paper.
Thus in this section, we will introduce some time series
clustering approaches inspired from the classic clustering
methods presented in the last section.

Definition: A time series is a function consisting
of successive numerical measurements collected over a
time interval. In practice, it is not continuous, thus it is
a sequence of discrete data points: X = (x1, ...,xn).

A. Difficulties with Time Series

Applying directly the k-means algorithm to time series
produces poor results. Indeed, it is designed to work with
points in a finite dimension space, not sequences of such
points. There are two obstacles. First, a suitable distance
between must be defined for time series. Then, given this
distance, a notion of average must be given too.

A simple metric to compare functions would be the
L2-norm:

d(f1, f2) = ‖f1 − f2‖2=
∫ t1

t0

|f1(x)− f2(x)|2dx

In reality, the functions manipulated are not contin-
uous, and the formula must be adapted for discrete
domains. Considering series of length n made of d-
dimensional points (i.e living in (Rd)n):

d(f1, f2) = ‖f1 − f2‖2=
n−1∑
x=0

‖f1(x)− f2(x)‖2

However, this distance is not suitable for time series.
Indeed, looking at Fig. 1, we can see that in the L2-norm
context, the red curve is nearer to the zero-function than
the blue one while it is only a translation of the first. That
is to say, two times series can be measured as totally
different, while in fact they are very close to each other.

1 2 3 4 5 6 7 8 9 10
1.0

0.5

0.0

0.5

1.0

Fig. 1: Translation of time series.

Because of this issue, another distance must be used.
The most common similarity measure used for time
series is Dynamic Time Warping (DTW).

B. Dynamic Time Warping

DTW is a sequence alignment algorithm which aims
to minimize the difference between two numerical se-
quences (e.g. time series) through a time warping pro-
cess.

Suppose we have two numerical sequences X =
(x1,x2, · · · ,xn) and Y = (y1,y2, · · · ,ym). A m × n
matrix M will be used in which the (i, j) element will
represent the (Euclidean) distance between xi and yj.

A warping path or an alignment π is a pair of
increasing integral vectors (π1, π2) of length p where
max(n,m) ≤ p ≤ n + m − 1. It is a path through
the matrix M which continuously connects elements
M(1, 1) and M(n,m).

An acceptable alignment has to advance one step at a
time, either to the right, either to the top, either to the

top right. These constraints can be described in a formal
way. Indeed, we should have 1 = π1(1) ≤ π1(2) ≤ · · · ≤
π1(p) = n and 1 = π2(1) ≤ π2(2) ≤ · · · ≤ π2(p) = m.
In addition, for all indices 1 ≤ i ≤ p− 1:

(π1(i+1)−π1(i), π2(i+1)−π2(i)) ∈ {(0, 1), (1, 0), (1, 1)}

To find the best match between X and Y , one needs
to find the alignment that minimizes the total distance.
We denote A(n,m) as the set of all alignments between
X and Y , then the DTW distance between these two
time series is defined as:

DTW (X,Y) = min
π∈A(n,m)

DX,Y (π)

where DX,Y (π) is defined as:

DX,Y (π) =

|π|∑
i=1

φ(xπ1(i),yπ2(i))

Here φ is a local divergence that measures the dis-
crepancy between any two points xi and yj from X
and Y . As we have already mentioned above, we use
simply the squared Euclidean distance to define this local
divergence, φ(x,y) = ‖x− y‖2.

To compute all possible routes and then take the
minimum is a naive method to implement the algorithm,
but may take too long to achieve. We can, instead,
compute recursively the cost of the optimal alignment
by defining a cumulative distance on the subsequences
Xi = (x1,x2, . . . ,xi) and Yj = (y1,y2, . . . ,yj). The
current cumulative distance will be the sum of the
distance of the current cell and the minimum of the
cumulative distances of its adjacent elements [5]:

dcum(i, j) = d(xi,yj) +min{dcum(i− 1, j

− 1), dcum(i, j − 1), dcum(i− 1, j)}

However, a direct implementation of this recursive
definition leads to an exponential time complexity. Thus,
a dynamic programming approach is implemented by
storing the partial results in a matrix, which leads to a
time complexity of O(|X|×|Y |). The algorithm is shown
in Algorithm III.

Remark: DTW measures a distance-like quantity
between two sequences, however it is not a distance
properly speaking, indeed, it does not guarantee the
triangle inequality to hold.

Based on this measure, k-means can be applied more
efficiently to numerical sequences, and in particular
to time series. However, the k-means algorithm also
requires to compute the averaging of a set of sequences,
and this task is not obvious using only DTW. Several

1: procedure DTW(X,Y)
2: # Create the distance matrix
3: dtwMatrix← makeNewMatrix(m,n)
4: for i ∈ {1..m} do
5: dtwMatrix[i, 0]← infinity
6: end for
7: for i ∈ {1..n} do
8: dtwMatrix[0, j]← infinity
9: end for

10: # Update the matrix using a dynamic approach
11: for i ∈ {1..m} do
12: for i ∈ {1..n} do
13: dtwMatrix[i, j]←
14: distance(X[i], Y [j])+
15: minimum(dtwMatrix[i− 1, j],
16: dtwMatrix[i, j − 1],
17: dtwMatrix[i− 1, j − 1])
18: end for
19: end for
20: return dtwMatrix
21: end procedure

Algorithm III: Dynamic Time Warping.

methods exist to deal with this problem. Our experiments
used the DTW Barycenter Averaging (DBA) [10].

C. Averaging of Time Series

The DTW Barycenter Averaging (DBA) method aims
to minimize the sum of squared DTW distances which
consists of single distances between each coordinate
of the average sequence and coordinates of sequences
associated to it. The main idea is to compute each coor-
dinate of the average as the barycenter of its associated
coordinates.

Suppose that we have a set of sequences
{X1, X2, · · · , Xs} whose average sequence is to
be determined. First, we initialize an average sequence.
DBA then iteratively refines this average sequence
by computing the DTW between the current average
sequence and each single sequence.

Indeed, let C = {c1, c2, · · · , cT} be the current
average sequence, and let C ′ = {c′1, c′2, · · · , c′T} be
the update of C, and we want to find coordinates of
C ′. We consider the function assoc which allows us to
compute all coordinates associated to each coordinate of
the current average sequence. For exemple,

assoc(ci)

denotes the set of elements from Xl that are associated
to ci through DTW alignement. Then, the ith coordinate
of the new average sequence can be computed as:

c′i = barycenter(assoc(ci))

Remark: The initial average sequence has to be
chosen carefully in order to accelerate the convergence.
We will not provide the details here, more detailed
analysis of this heuristic can be found in [10].

IV. EXPERIMENTS

We used 3 different datasets (Lighting2, syn-
thetic_control and Trace) from a standard database of
time series called UCR (University of California, River-
side) Time Series Classification Archive [11]. We tried
to run 7 clustering algorithms on each of these datasets.

The first clustering algorithm is the k-means using
DTW as a distance and DBA as an averaging. The
combination DTW/DBA is a standard, and will be used
to determine the efficiency of the other methods. The
other methods are the kernel k-means and the RKDE,
each using three different kernels, described next.

A. Time series specific kernels

In this subsection, we will use the same notations as
in the section III-B.

1) Gaussian Kernel: The DTW distance can be turned
into a kernel, using the following formula:

∀X,Y K(X,Y) = exp

(
−DTW (X,Y)2

σ

)
As we have already mentioned in the previous section,
DTW is not a distance as it does not satisfy the triangular
inequality. Thus, the formula cited right above does not
define a function respecting the properties of a kernel
as it is not positive definite. As a result, DTW does not
quantify dissimilarity in a meaningful way. Yet, running
experiments with this function may be worthwhile, as
DTW is still widely used to find the closest match(es)
in a database given a time series of interest.

2) Global Alignment Kernel (GAK): We just ex-
plained that the DTW distance can not be used to
define a kernel immediately. Yet, time-series specific
kernels based on DTW exist. Global Alignment (GA)
kernels [12], which are positive definite, seem to do
a better job of quantifying all similarities coherently,
because they take into account all possible alignments.

More precisely, the GA kernel is defined as the
exponentiate soft-minimum of all alignment distances:

KGA(X,Y) =
∑

π∈A(n,m)

exp−DX,Y (π)

Remark: The equation above can be rewritten using
a local similarity function k = e−φ:

KGA(X,Y) =
∑

π∈A(n,m)

|π|∏
i=1

k(xπ1(i),yπ2(i))

The similarity described by this kernel incorporates
the whole spectrum of costs {DX,Y (π), π ∈ A(n,m)}.
Thus, it provides a richer statistic than considering only
the minimum of that set.

However, the computational effort required to compute
KGA is in O(mn), similar to the DTW distance.

3) Triangular Global Alignment (TGA): Triangular
Global Alignment (TGA) kernels are a variation of the
GA kernel. They consider a smaller subset of alignments.
They are faster to compute and positive definite, and
can be seen as trade-off between the full GA kernel
(accurate, versatile but slow) and a Gaussian kernel (fast
but limited).

Indeed, exact DTW distances are expensive to com-
pute for time series of dimension d since the complexity
is in O(dmn) at each evaluation. We can speed up
this algorithm by only considering a small subset of all
alignments [15]. We thus reformulate the cost function
DX,Y (π) by weighting the divergence φ:

Dγ
X,Y (π) =

|π|∑
i=1

γxπ1(i),yπ2(i)
φ(xπ1(i),yπ2(i))

For instance, γk can be defined so as to ensure that only
alignments that are close to the diagonal are taken into
account [16]:

γi,j =

{
1 if |i− j|< T
∞ if |i− j|≥ T

where T is a parameter to be determined called Trian-
gular.

B. Implementations

We implemented the classic methods of clustering and
DTW in python 2.7.6. We also created an interface which
is generic enough so that we can adapt easily new kernels
and methods to it. And for every new training dataset,
we just have to compute the matrix of distances of this
dataset, then pass it through our interface.

For GA kernels we used a python wrapper called
TGA_python_wrapper [14] in which two parameters
Kernel bandwidth and Triangular are required. In prac-
tice, when Triangular is set to 0, the routine returns
the original GA kernel. When it is bigger than 1, the
routine only takes into account alignments for which
−T < π1(i)−π2(i) < T for all indices of the alignment.

C. Parameter Tuning

The Kernel bandwidth σ can be set as a multiple of
a simple estimate of the median distance of different
points observed in different time-series of the training
set, scaled by the square root of the median length of
time-series in the training set, as hinted by the creator
of these kernels.

For RKDE, we have to decide the Cut-off probability
p. For the k-means algorithm, the number of clusters was
known. We used this information to infer a good Cut-
off probability. We used a dichotomic search to have
the RKDE algorithm return the right number of clusters.
We assumed the function considered (the number of
clusters, given a random seed and p) was regular enough
to perform this: when p is 0, there is only 1 cluster; when
p is 1, there is 1 cluster per point; when in between,
we assumed small variations on p entail small variations
on output. These hypothesis turned reasonable for our
experiments. Should a dichotomic search had failed,
we would have ignored the corresponding clustering
technique, as we do not have a systematic method to
compare clustering with different number of groups.

Finally, for TGA, we have to decide the Triangular
parameter T . This can be set to a reasonable multiple of
the median length, e.g 0.2 or 0.5.

D. Evaluation of the Results

We choose the Cohen’s kappa to evaluate our cluster-
ing.

Cohen’s kappa coefficient is a statistic which mea-
sures inter-rater agreement between two raters who each
classify several items into several mutually exclusive cat-
egories, thus seems to be an appropriate way to evaluate
our results. It is generally thought to be a more robust
measure than simple percent agreement calculation, since
κ takes into account the agreement occurring by chance.

The κ is calculated as follow:

κ =
p0 − pe
1− pe

where p0 is the relative observed agreement among
raters, and pe is the hypothetical probability of chance
agreement, using the observed data to calculate the
probabilities of each observer randomly saying each
category. If the raters are in complete agreement then
κ = 1. If there is no agreement among the raters other
than what would be expected by chance then κ ≤ 0.

E. Results

In this subsection, we will first show some figures
to illustrate our clustering. Then we will present the

Cohen’s kappa of each clustering algorithm and try to
interpret them.

Fig. 2 shows the original classification of the dataset
called synthetic_control. Each subplot of this figure
represents one cluster of the dataset.

3

2

1

0

1

2

3

0 10 20 30 40 50 60
3

2

1

0

1

2

3

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Fig. 2: Original.

And from Fig. 3 to Fig. 5 are the results of clustering
obtained with the k-means using DTW/DBA, the k-
means using GA kernels and the RKDE using GA
kernels ran on this dataset. Visibly, the DTW/DBA has
a better performance than other methods, and this can
be confirmed by the Cohen’s kappa coefficient showed
next.

3

2

1

0

1

2

3

0 10 20 30 40 50 60
3

2

1

0

1

2

3

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Fig. 3: DTW/DBA.

The Fig. 6 shows the Cohen’s kappa of each cluster-
ing algorithm ran on the datasets Lighting2, Trace and
synthetic_control.

For all the datasets we used, the k-means method using
both DTW and DBA yields the best clustering. We will
try to explain this result.

Having a proper averaging method may be the reason
it achieved a better clustering than the others k-means.

3

2

1

0

1

2

3

0 10 20 30 40 50 60
0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.060.040.020.000.020.040.06 0 10 20 30 40 50 60

Fig. 4: k-means GA.

3

2

1

0

1

2

3

0 10 20 30 40 50 60
3

2

1

0

1

2

3

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Fig. 5: RKDE GA.

As for the kernel used, they are based on DTW, so they
must be adapted to the same kind of series.

The RKDE method has the advantage of guessing the
right number of clusters, but it is of no use here. It can
also theoritically work with any shape of clusters, but
this didn’t help too. Its results are similar to the k-means
method using the same kernels, and no situation where
it shines have been found.

The DTW/DBA seems to surpass similar methods.
Yet, its success is still limited, as it is not adapted to all
cases: nothing achieved good results for the Lighting2
dataset, and other results are far from being perfect.
Finding a new approach to comparing time series may
be the next step toward fine clustering of time series,
rather then optimizing the DTW/DBA method.

synthetic
Lighting2 Trace control

RKDE (tga) 0.0294 0.399 0.428
RKDE (gak) 0.0656 0.385 0.436
RKDE (gau) 0.0526 0.399 0.216
k-means (tga) 0.0192 0.355 0.480
k-means (gak) 0.0667 0.426 0.440
k-means (gau) 0.0217 0.418 0.488

DTW/DBA 0.114 0.682 0.496

Fig. 6: Cohen’s kappa

V. CONCLUSION

In this paper, we showed some classic methods and
kernel methods of clustering and their applications to
time series clustering. We ran several experiments based
on these methods and tried to compare them using Co-
hen’s kappa coefficient as the criteria for quality of our
clustering. The DTW/DBA seems to be more convincing
than other methods but still not very satisfying.

In the future work, there are two ways we may try to
improve the results. The first one is try to develop some
new kernels (instead of classic kernels like Gaussian
kernels). Another possible way is try to apply some
optimal transport methods to time series clustering as
we can consider time series as "discrete" distributions in
some aspects.

ACKNOWLEDGEMENT

We are heartily thankful to our supervisor, Thomas
Corpetti and Romain Tavenard, whose encouragement,
guidance and support from the initial to the final level
enabled us to develop an understanding of the subject.

And we offer our regards and blessings to all of those
who supported us in any respect during the completion
of the project.

REFERENCES

[1] Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer.

[2] Filippone, M., Camastra, F., Masulli, F., & Rovetta, S. (2008).
A survey of kernel and spectral methods for clustering. Pattern
recognition, 41(1), 176-190.

[3] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20, 53-65.

[4] Müller, K. R., Mika, S., Rätsch, G., Tsuda, K., & Schölkopf,
B. (2001). An introduction to kernel-based learning algorithms.
Neural Networks, IEEE Transactions on, 12(2), 181-201.

[5] Liao, T. W. (2005). Clustering of time series data—a survey.
Pattern recognition, 38(11), 1857-1874.

[6] Sheather, Simon J., & Michael C. Jones. A reliable data-based
bandwidth selection method for kernel density estimation. Jour-
nal of the Royal Statistical Society. Series B (Methodological)
(1991): 683-690.

[7] Turlach, B. A. Bandwidth selection in kernel density estimation:
A review. Université catholique de Louvain, 1993.

[8] Kim, J. and Scott, C. D. (2012). Robust kernel density estimation.
The Journal of Machine Learning Research, 13(1), 2529-2565.

[9] Huber, Peter J. (1964). Robust estimation of a location parame-
ter. The Annals of Mathematical Statistics 35.1 (1964): 73-101.

[10] Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global
averaging method for dynamic time warping, with applications
to clustering. Pattern recognition, 44(3), 678-693.

[11] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum,
Anthony Bagnall, Abdullah Mueen and Gustavo Batista (2015).
The UCR Time Series Classification Archive. www.cs.ucr.edu/
~eamonn/time_series_data/

[12] Cuturi, M., Vert, J. P., Birkenes, O. and Matsui, T. (2007,
April). A kernel for time series based on global alignments. In
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on (Vol. 2, pp. II-413). IEEE.

[13] Cuturi, M. (2011). Fast global alignment kernels. In Proceed-
ings of the 28th international conference on machine learning
(ICML-11) (pp. 929-936).

[14] Adrien Gaidon http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/
Code/TGA_python_wrapper_v1.0.tar.gz

[15] Rabiner, L. and Juang, B. H. (1993). Fundamentals of speech
recognition.

[16] Sakoe, H. and Chiba, S. (1978). Dynamic programming al-
gorithm optimization for spoken word recognition. Acoustics,
Speech and Signal Processing, IEEE Transactions on, 26(1), 43-
49.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Code/TGA_python_wrapper_v1.0.tar.gz
http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Code/TGA_python_wrapper_v1.0.tar.gz

	Introduction
	Clustering
	k-means Clustering
	Kernel k-means Clustering
	Kernel Density Estimation Clustering
	Robust KDE

	Time series
	Difficulties with Time Series
	Dynamic Time Warping
	Averaging of Time Series

	Experiments
	Time series specific kernels
	Gaussian Kernel
	Global Alignment Kernel (GAK)
	Triangular Global Alignment (TGA)

	Implementations
	Parameter Tuning
	Evaluation of the Results
	Results

	Conclusion
	References

