
1

Datalog

Rules
Programs
Negation

2

Review of Logical If-Then Rules

h(X,…) :- a(Y,…) & b(Z,…) & …

head

body

subgoals

“The head is true if all the
subgoals are true.”

3

Terminology

Head and subgoals are atoms.
An atom consists of a predicate (lower
case) applied to zero or more
arguments (upper case letters or
constants).

4

Semantics

Predicates represent relations.
An atom is true for given values of its
variables iff the arguments form a tuple
of the relation.
Whenever an assignment of values to
all variables makes all subgoals true,
the rule asserts that the resulting head
is also true.

5

Example

We shall develop rules that describe
what is necessary to “make” a file.
The predicates/relations:
source(F) = F is a “source” file.
includes(F,G) = F #includes G.
create(F,P,G) = F is created by
applying process P to file G.

6

Example --- Continued

Rules to define “view” req(X,Y) = file Y
is required to create file X :
req(F,F) :- source(F)
req(F,G) :- includes(F,G)
req(F,G) :- create(F,P,G)
req(F,G) :- req(F,H) & req(H,G)

G is required for
F if there is some
process P that
creates F from G.

G is required for F if there is some H such that
H is required for F and G is required for H.

7

Why Not Just Use SQL?

1. Recursion is much easier to express in
Datalog.

Viz. last rule for req.

2. Rules express things that go on in both
FROM and WHERE clauses, and let us
state some general principles (e.g.,
containment of rules) that are almost
impossible to state correctly in SQL.

8

IDB/EDB

A predicate representing a stored relation
is called EDB (extensional database).
A predicate representing a “view,” i.e., a
defined relation that does not exist in the
database is called IDB (intesional
database).
Head is always IDB; subgoals may be IDB
or EDB.

9

Datalog Programs

A collection of rules is a (Datalog)
program.
Each program has a distinguished IDB
predicate that represents the result of
the program.

E.g., req in our example.

10

Extensions

1. Negated subgoals.
2. Constants as arguments.
3. Arithmetic subgoals.

11

Negated Subgoals

NOT in front of a subgoal means that
an assignment of values to variables
must make it false in order for the body
to be true.
Example:

cycle(F) :- req(F,F) & NOT source(F)

12

Constants as Arguments

We use numbers, lower-case letters, or
quoted strings to indicate a constant.
Example:

req(“foo.c”, “stdio.h”) :-

Note that empty body is OK.
Mixed constants and variables also OK.

13

Arithmetic Subgoals
Comparisons like < may be thought of as
infinite, binary relations.

Here, the set of all tuples (x,y) such that x<y.

Use infix notation for these predicates.
Example:

composite(A) :- divides(B,A) &
B > 1 & B != A

14

Evaluating Datalog Programs

1. Nonrecursive programs.
2. Naïve evaluation of recursive

programs without IDB negation.
3. Seminaïve evaluation of recursive

programs without IDB negation.
Eliminates some redundant computation.

15

Safety

When we apply a rule to finite relations, we
need to get a finite result.
Simple guarantee: safety = all variables
appear in some nonnegated, relational (not
arithmetic) subgoal of the body.

Start with the join of the nonnegated, relational
subgoals and select/delete from there.

16

Examples: Nonsafety

p(X) :- q(Y)

bachelor(X) :- NOT married(X,Y)

bachelor(X) :- person(X) &

NOT married(X,Y)

X is the problem Both X and Y
are problems

Y is still a problem

17

Nonrecursive Evaluation

If (and only if!) a Datalog program is
not recursive, then we can order the
IDB predicates so that in any rule for p
(i.e., p is the head predicate), the only
IDB predicates in the body precede p.

18

Why?

Consider the dependency graph with:
Nodes = IDB predicates.
Arc p -> q iff there is a rule for p with q
in the body.

Cycle involving node p means p is
recursive.
No cycles: use topological order to
evaluate predicates.

19

Applying Rules

To evaluate an IDB predicate p :
1. Apply each rule for p to the current

relations corresponding to its subgoals.
“Apply” = If an assignment of values to
variables makes the body true, insert the
tuple that the head becomes into the relation
for p (no duplicates).

2. Take the union of the result for each p-
rule.

20

Example

p(X,Y) :- q(X,Z) & r(Z,Y) & Y<10

Q = {(1,2), (3,4)};
R = {(2,5), (4,9), (4,10), (6,7)}
Assignments making the body true:

(X,Y,Z) = (1,5,2), (3,9,4)
So P = {(1,5), (3,9)}.

21

Algorithm for Nonrecursive

FOR (each predicate p in
topological order) DO

apply the rules for p to

previously computed relations

to compute relation P for p;

22

Naïve Evaluation for Recursive

make all IDB relations empty;

WHILE (changes to IDB) DO

FOR (each IDB predicate p) DO

evaluate p using current

values of all relations;

23

Important Points

As long as there is no negation of IDB
subgoals, then each IDB relation
“grows,” i.e., on each round it contains
at least what it used to contain.
Since relations are finite, the loop must
eventually terminate.
Result is the least fixedpoint (minimal
model) of rules.

24

Seminaïve Evaluation

Key idea: to get a new tuple for relation P on
one round, the evaluation must use some
tuple for some relation of the body that was
obtained on the previous round.
Maintain ∆P = new tuples added to P on
previous round.
“Differentiate” rule bodies to be union of
bodies with one IDB subgoal made “∆.”

25

Example (“make files”)

r(F,F) :- s(F)

r(F,G) :- i(F,G))

r(F,G) :- c(F,P,G)

r(F,G) :- r(F,H) & r(H,F)

Assume EDB predicates s, i, c have
relations S, I, C.

26

Example --- Continued

Initialize: R = ∆R = σ#1=#2(S × S) ∪ I
∪ π 1,3(C)
Repeat until ∆R = φ:

1. ∆R = π1,3(R ⋈ ∆R ∪ ∆ R ⋈ R)

2. ∆R = ∆R - R
3. R = R ∪ ∆ R

27

Function Symbols in Rules

Extends Datalog by allowing arguments
built from constants, variables, and
function names, recursively applied.
Function names look like predicate
names, but are allowed only within the
arguments of atoms.

Predicates return true/false; functions
return arbitrary values.

28

Example

Instead of a string argument like
“101 Maple” we could use a term like

addr(street(“Maple”), number(101))

Compare with the XML term
<ADDR><STREET>Maple</STREET>

<NUMBER>101</NUMBER>

</ADDR>

29

Another Example

Predicates:
1. isTree(X) = X is a binary tree.
2. label(L) = L is a node label.

Functions:
1. node(A,L,R) = a tree with root labeled

A, left subtree L, and right subtree R.
2. null = 0-ary function (constant)

representing the empty tree.

30

Example --- Continued

The rules:
isTree(null) :-

isTree(node(L,T1,T2)) :-

label(L) &

isTree(T1) &

isTree(T2)

31

Example --- Concluded

Assume label(a) and label(b) are true.
I.e., a and b are in the relation for label.

Infer isTree(node(a,null,null)).
Infer
isTree(node(b,null,node(a,null,null))).

b

a

32

Evaluation of Rules With
Function Symbols

Naïve, seminaïve still work when there
are no negated IDB subgoals.
They both lead to the unique least
fixedpoint (minimal model).
But… this fixedpoint may not be
reached in any finite number of rounds.

The isTree rules are an example.

33

Problems With IDB Negation

When rules have negated IDB subgoals,
there can be several minimal models.
Recall: model = set of IDB facts, plus
the given EDB facts, that make the rules
true for every assignment of values to
variables.

Rule is true unless body is true and head is
false.

34

Example: EDB

red(X,Y)= the Red bus line runs from
X to Y.
green(X,Y)= the Green bus line runs
from X to Y.

35

Example: IDB

greenPath(X,Y)= you can get from
X to Y using only Green buses.
monopoly(X,Y)= Red has a bus from
X to Y, but you can’t get there on
Green, even changing buses.

36

Example: Rules

greenPath(X,Y) :- green(X,Y)

greenPath(X,Y) :-
greenPath(X,Z) &
greenPath(Z,Y)

monopoly(X,Y) :- red(X,Y) &
NOT greenPath(X,Y)

37

EDB Data

red(1,2), red(2,3), green(1,2)

1 2 3

38

Two Minimal Models

1. EDB + greenPath(1,2) + monopoly(2,3)
2. EDB + greenPath(1,2) + greenPath(2,3)

+ greenPath(1,3)
greenPath(X,Y) :- green(X,Y)

greenPath(X,Y) :- greenPath(X,Z) &

greenPath(Z,Y)

monopoly(X,Y) :- red(X,Y) &

NOT greenPath(X,Y)

1 2 3

39

Stratified Models

1. Dependency graph describes how IDB
predicates depend negatively on each
other.

2. Stratified Datalog = no recursion
involving negation.

3. Stratified model is a particular model
that “makes sense” for stratified
Datalog programs.

40

Dependency Graph

Nodes = IDB predicates.
Arc p -> q iff there is a rule for p that
has a subgoal with predicate q.
Arc p -> q labeled – iff there is a
subgoal with predicate q that is
negated.

41

Monopoly Example

monopoly

greenPath

--

42

Another Example: “Win”

win(X) :- move(X,Y) & NOT win(Y)

Represents games like Nim where you win
by forcing your opponent to a position
where they have no move.

43

Dependency Graph for “Win”

win--

44

Strata

The stratum of an IDB predicate is the
largest number of –’s on a path from
that predicate, in the dependency graph.
Examples:

monopoly

greenPath

--

Stratum 1

win--

Infinite stratum
Stratum 0

45

Stratified Programs

If all IDB predicates have finite strata,
then the Datalog program is stratified.
If any IDB predicate has the infinite
stratum, then the program is
unstratified, and no stratified model
exists.

46

Stratified Model

Evaluate strata 0, 1,… in order.
If the program is stratified, then any
negated IDB subgoal has already had
its relation evaluated.

Safety assures that we can “subtract it
from something.”
Treat it as EDB.

Result is the stratified model.

47

Examples
For “Monopoly,” greenPath is in
stratum 0: compute it (the transitive
closure of green).
Then, monopoly is in stratum 1:
compute it by taking the difference of
red and greenPath.
Result is first model proposed.
“Win” is not stratified, thus no stratified
model.

	Datalog
	Review of Logical If-Then Rules
	Terminology
	Semantics
	Example
	Example --- Continued
	Why Not Just Use SQL?
	IDB/EDB
	Datalog Programs
	Extensions
	Negated Subgoals
	Constants as Arguments
	Arithmetic Subgoals
	Evaluating Datalog Programs
	Safety
	Examples: Nonsafety
	Nonrecursive Evaluation
	Why?
	Applying Rules
	Example
	Algorithm for Nonrecursive
	Naïve Evaluation for Recursive
	Important Points
	Seminaïve Evaluation
	Example (“make files”)
	Example --- Continued
	Function Symbols in Rules
	Example
	Another Example
	Example --- Continued
	Example --- Concluded
	Evaluation of Rules With Function Symbols
	Problems With IDB Negation
	Example: EDB
	Example: IDB
	Example: Rules
	EDB Data
	Two Minimal Models
	Stratified Models
	Dependency Graph
	Monopoly Example
	Another Example: “Win”
	Dependency Graph for “Win”
	Strata
	Stratified Programs
	Stratified Model
	Examples

