
1

Semantics of Datalog With 
Negation

Local Stratification
Stable Models

Well-Founded Models



2

The Story So Far --- 1

When there is no (IDB) negation, there 
is a unique minimal model (least 
fixedpoint), which is the accepted 
meaning of the Datalog program.
With negation, we often have several 
minimal models, and we need to decide 
which one is meant by the program.



3

The Story So Far --- 2

When the program is stratified, one 
minimal model is the stratified model.

This model appears in all cases to be the one 
we intuitively want.
Important technical point: if the program 
actually has no negation, then the stratified 
model is the unique minimal model.
Thus, stratified semantics extends least-
fixedpoint semantics.



4

What About Unstratified Datalog?

There are some more general 
conditions under which an “accepted” 
choice among models exists.
From least to most general: Locally 
stratified models, modularly stratified 
models, stable/well-founded models.



5

Why Should We Care?

1. Solidify our understanding of when 
declarative assertions, like logical 
rules, lead to a meaningful description 
of something.

2. SQL recursion really deals with 
ambiguities of the same kind, 
especially regarding aggregations, as 
well as negation.



6

Ground Atoms

All these approaches start by 
instantiating the rules: replace 
variables by constants in all possible 
ways, and throw away instances of the 
rules with a known false EDB subgoal.
An atom with no variables is a ground 
atom.

Like propositions in propositional calculus.



7

Example: Ground Atoms

Consider the Win program:
win(X) :- move(X,Y) & NOT win(Y)

with the following moves:

1 32

win(1) :- move(1,2) & NOT win(2)
win(1) :- move(1,3) & NOT win(3)
win(2) :- move(2,3) & NOT win(3)



8

Example --- Continued
win(1) :- move(1,2) & NOT win(2)
win(1) :- move(1,3) & NOT win(3)
win(2) :- move(2,3) & NOT win(3)

Other instantiations of the rule have a 
false move subgoal and therefore cannot 
infer anything.
win(1), win(2), and win(3) are the only 
relevant IDB ground atoms for this game.



9

Locally Stratified Models

1. Build dependency graph with:
Nodes = relevant IDB ground atoms.
Arc p -> q iff q appears in an 
instantiated body with head p.
Label – on arc if q is negated.

2. Stratum of each node defined as 
before.

3. Locally stratified = finite strata only.



10

Example
win(1) :- move(1,2) & NOT win(2)
win(1) :- move(1,3) & NOT win(3)
win(2) :- move(2,3) & NOT win(3)

win(1) win(2) win(3)
--

--

--

Stratum 2 Stratum 1 Stratum 0



11

Locally Stratified Model

Include all EDB ground atoms;

FOR (stratum i = 0, 1, …) DO

WHILE (changes occur) DO

IF (some rule for some p at 
stratum i has a true body) 
THEN add p to model;



12

Example
win(1) win(2) win(3)

--

--

--

win(1) :- move(1,2) & NOT win(2)
win(1) :- move(1,3) & NOT win(3)
win(2) :- move(2,3) & NOT win(3)

1. No rules for win(3); therefore false.
2. win(2) rule satisfied; therefore true.
3. Second rule for win(1) satisfied,

therefore win(2) also true.



13

Stable Models --- Intuition

A model M is “stable” if, when you 
apply the rules to M and add in the 
EDB, you infer exactly the IDB portion 
of M.
But … when applying the rules to M, 
you can only use non-membership in M.



14

Example

The Win program again:
win(X) :- move(X,Y) & NOT win(Y)

with moves:
M = EDB + {win(1), win(2)} is stable.

Y = 3, X = 1 yields win(1).
Y = 3, X = 2 yields win(2).
Cannot yield win(3).

1 32



15

Gelfond-Lifschitz Transform 
(Formal Notion of Stability)

1. Instantiate rules in all possible ways.
2. Delete instantiated rules with any false 

EDB or arithmetic subgoal (incl. NOT).
3. Delete instantiated rules with an IDB 

subgoal NOT p(…), where p(…) is in M.
4. Delete subgoal NOT p(…) if p(…) is not in 

M.
5. Delete true EDB and arithmetic subgoals.



16

GL Transform --- Continued

Use the remaining instantiated rules 
plus EDB to infer all possible IDB 
ground atoms.
Then add in the EDB.
Result is GL(M ).
M is stable iff GL(M ) = M.



17

Example

The Win program yet again:
win(X) :- move(X,Y) & NOT win(Y)

with moves:
M = EDB + {win(1), win(2)}.
After steps (1) and (2):

1 32

win(1) :- move(1,2) & NOT win(2)
win(1) :- move(1,3) & NOT win(3)
win(2) :- move(2,3) & NOT win(3)

Step (3): neg-
ated true IDB.



18

Example --- Continued

win(1) :- move(1,3) & NOT win(3)
win(2) :- move(2,3) & NOT win(3)

Step (4): negated
false IDB subgoal.

Step (5): true
EDB subgoal.

Remaining rules have true (empty) bodies.
Infer win(1), win(2).
GL(M ) = EDB + {win(1), win(2)} = M.



19

Bottom Line on the GL Transform

You can use (positive or negative) IDB 
and EDB facts from M to satisfy or 
falsify a negated subgoal.
You can use a positive EDB fact from M
to satisfy a positive subgoal.
But you can only use a positive IDB fact 
to satisfy a positive IDB subgoal if that 
fact has been derived in the final step.



20

To Make the Point Clear…

If all I have is the instantiated rule  
p(1) :- p(1), then M = {p(1)} is not
stable.
We cannot use the membership of 
positive IDB subgoal p(1) in M to make 
the body of the rule true.  



21

The Stable Model

If a program and EDB has exactly one 
model M with that EDB that is stable, 
then M is the stable model for the 
program and EDB.
Otherwise, there is no stable model for 
this program and EDB.



22

Propositional Datalog

Many useful examples use propostional 
variables (0-ary predicates).
All propositional variables are IDB.
For GL transform, just:

1. Eliminate rules with a negated variable 
that is in M.

2. Eliminate subgoal NOT p if p in M.
3. Run the deduction step.



23

Example: p:- NOT q,  q :- NOT p

{p} is stable. p :- NOT q
q :- NOT p

Eliminate rule with
a false negated subgoal.

Eliminate
true subgoal
that is the
NOT of IDB.Infer only p.

Thus, {p} is stable.
Unfortunately, so is {q}.
Thus, this program has no stable model.



24

p:- p & NOT q,  q :- NOT p

{p} is not stable. p :- p & NOT q
q :- NOT p

Eliminate rule with
a false subgoal.

Eliminate
true negated
subgoal.

Cannot infer p !
GL({p}) = ∅ .
{p} is not stable.



25

Example --- Continued

{q} is stable. p :- p & NOT q
q :- NOT p

Eliminate rule with
a false negated subgoal. Eliminate

true negated
subgoal.Infer only q.

Thus, {q} is stable.
GL({p,q}) = ∅ ; GL(∅ ) = {q}.
Thus, {q} is the (unique) stable model.



26

3-Valued Models

Needed for “well-founded semantics.”
Model consists of:

1. A set of true EDB facts (all other EDB 
facts are assumed false).

2. A set of true IDB facts.
3. A set of false IDB facts (remaining IDB 

facts have truth value “unknown”).



27

Well-Founded Models

Start with instantiated rules.
Clean the rules = eliminate rules with a 
known false subgoal, and drop known 
true subgoals.
Two modes of inference:

1. “Ordinary”: if the body is true, infer head.
2. “Unfounded sets”: assume all members of 

an unfounded set are false.



28

Unfounded Sets

U is an unfounded set (of positive, ground, 
IDB atoms) if every remaining instantiated 
rule with a member of U in the head also 
has a member of U in the body.
Note we could never infer any member of 
U to be true.
But assuming them false is still “metalogic.”



29

Example

p :- q, q :- p

{p,q} is an unfounded set.
So is ∅ .
Note the property of being an 
unfounded set is closed under union, so 
there is always a unique, maximal 
unfounded set.



30

Constructing the Well-
Founded Model

REPEAT

“clean” instantiated rules;

make all ordinary inferences;

“clean” instantiated rules;

find the largest unfounded set 
and make its atoms false;

UNTIL no changes;

make all remaining IDB atoms

“unknown”;



31

Example

win(X) :- move(X,Y) & NOT win(Y)

with these moves:

1 65432



32

Instantiated, Cleaned Rules

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :- NOT win(4)

win(4) :- NOT win(5)

win(5) :- NOT win(6)

No ordinary
inferences.

{win(6)} is the
largest unfounded
set.  Infer
NOT win(6).



33

Second Round

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :- NOT win(4)

win(4) :- NOT win(5)

win(5) :-

Infer win(5).

{win(4)} is the
largest unfounded
set.  Infer
NOT win(4).



34

Third Round

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :-

win(5) :-

Infer win(3).

No nonempty
unfounded set,
so done.



35

Example --- Concluded
Well founded model is:

{win(3), win(5), NOT win(4), NOT win(6)}.
The remaining IDB ground atoms ---
win(1) and win(2) --- have truth value 
“unknown.”
Notice that if both sides play best, 3 and 
5 are a win for the mover, 4 and 6 are a 
loss, and 1 and 2 are a draw.

654321



36

Another Example
p :- q r :- p & q             
q :- p s :- NOT p & NOT q

First round: no ordinary inferences.
{p, q} is an unfounded set, but {p, q, r} 
is the largest unfounded set.
Second round: infer s from NOT p and 
NOT q.
Model: {NOT p, NOT q, NOT r, s}.



37

Alternating Fixedpoint

1. Instantiate and “clean” the rules.
2. In “round 0,” assume all IDB ground 

atoms are false.
3. In each round, apply the GL transform 

to the EDB plus true IDB ground 
atoms from the previous round.



38

Alternating Fixedpoint --- 2

Process converges to an alternation of 
two sets of true IDB facts.
Even rounds only increase; odd rounds 
only decrease the sets of true facts.
In the limit, true facts are true in both 
sets; false facts are false in both sets, 
and “unknown” facts alternate.



39

Previous Win Example

1 65432

win(1) :- NOT win(2)

win(2) :- NOT win(1)

win(2) :- NOT win(3)

win(3) :- NOT win(4)

win(4) :- NOT win(5)

win(5) :- NOT win(6)



40

Computing the AFP
1 65432

Round
win(1)
win(2)
win(3)
win(4)
win(5)
win(6)

0
0

0
0

0
0
0

2
0

0
0

0
1
0

1
1

1
1

1
1
0

3
1

1
1

0
1
0

4
0

1
0

0
1
0

5
1

1
1

0
1
0



41

Another Example

p :- q r :- p & q

q :- p s :- NOT p & NOT q

Round
p
q
r
s

0
0
0
0
0

1
0
0
0
1

2
0
0
0
1



42

Yet Another Example

p :- q q :- NOT p

Round
p
q

0
0
0

1
1
1

Notice how p
is inferred only
after we infer
q on this round

2
0
0

Notice that we may
not use positive
IDB fact q from
previous round to
infer p.



43

Containment of Semantics

Say method A < method B if:
1. Whenever a program has a model 

according to method A, it has the same 
model under method B.

2. There is at least one program that has a 
model under B but not under A.

Draw B above A in diagrams.



44

Comparison of Semantics

Stable Well-founded

Locally stratified

Stratified

Least Fixedpoint



45

LFP < Stratified

LFP only applies to Datalog without 
negation.
What does Stratified do when there is 
no negation?
Everything is in stratum 0, and the 
whole IDB is computed by the LFP 
algorithm.
So Stratified model = LFP model.



46

Stratified < Locally Stratified

Consider a Datalog program P with a 
stratified model, S.  Need to show:

1. P is locally stratified.
2. Fact q(…) in S is in the locally stratified 

model L.
3. Fact q(…) in L is also in S.



47

P Is Locally Stratified

Key idea: path with n ---’s starting at 
q(…) in dependency graph of ground 
atoms implies a path with n ---’s 
starting at q in the dependency graph 
of predicates.

q(1,2) p(3,4) s(5,6) t(7,8)
---

implies

q p s t
---



48

P Is Locally Stratified --- 2

Thus, stratum of ground atom q(…) is 
no greater than the stratum of 
predicate q.
If the strata of all predicates in P are 
finite, then the strata of all ground 
atoms are finite.

I.e., if P is stratified, it is locally stratified 
for any EDB.



49

q(…) in S iff q(…) in L

Proof = induction on stratum of q.
Basis: stratum 0.
Then q(…) is inferred for S using naïve 
evaluation, with no negated IDB 
subgoals ever used.
The same sequence of inferences, 
using instantiated rules, lets us infer 
q(…) as we compute L.



50

S = L, Continued

Conversely, if q(…) is in L, then it is 
inferred using no negated IDB 
subgoals.
Thus, the same sequence of inferences 
will be carried out using naïve 
evaluation for S.



51

Inductive Step

Suppose q is at stratum i.
Suppose q(…) is inferred for S at 
stratum i, using naïve evaluation with 
all IDB at stratum <i treated as EDB.
By inductive hypothesis, L and S
agree below stratum i.
Thus, same sequence of inferences, 
starting with what is known about L, 
infers q(…) for L; i.e. S ⊆ L.



52

Inductive Step: L ⊆ S

Suppose q(…) is inferred for L, and q is 
at stratum i.
Then the inference uses an instantiated 
rule, with any negated IDB subgoals 
having predicates at strata <i.
By the inductive hypothesis, L and S
agree on all those instantiated subgoals.



53

Inductive Step --- Concluded

Thus, naïve evaluation at stratum i
puts q(…) in S.

Requires another induction about 
predicates at stratum i.

That is, L ⊆ S.
Therefore L = S.



54

More Proofs

We’re not going to prove that the 
locally stratified model, if it exists, is 
both the unique stable model and the 
well-founded model.



55

Comparison of Stable and 
Well-Founded

If there is a 2-valued (no UNKNOWN’s) 
well-founded model, then that is also 
the stable model.
Yet, computing the well-founded model 
by alternating fixedpoint is polynomial 
in the size of the database.
But it is NP-hard to tell whether a 
program has a unique stable model.


	Semantics of Datalog With Negation
	The Story So Far --- 1
	The Story So Far --- 2
	What About Unstratified Datalog?
	Why Should We Care?
	Ground Atoms
	Example: Ground Atoms
	Example --- Continued
	Locally Stratified Models
	Example
	Locally Stratified Model
	Example
	Stable Models --- Intuition
	Example
	Gelfond-Lifschitz Transform (Formal Notion of Stability)
	GL Transform --- Continued
	Example
	Example --- Continued
	Bottom Line on the GL Transform
	To Make the Point Clear…
	The Stable Model
	Propositional Datalog
	Example: p:- NOT q,  q :- NOT p
	p:- p & NOT q,  q :- NOT p
	Example --- Continued
	3-Valued Models
	Well-Founded Models
	Unfounded Sets
	Example
	Constructing the Well-Founded Model
	Example
	Instantiated, Cleaned Rules
	Second Round
	Third Round
	Example --- Concluded
	Another Example
	Alternating Fixedpoint
	Alternating Fixedpoint --- 2
	Previous Win Example
	Computing the AFP
	Another Example
	Yet Another Example
	Containment of Semantics
	Comparison of Semantics
	LFP < Stratified
	Stratified < Locally Stratified
	P  Is Locally Stratified
	P  Is Locally Stratified --- 2
	q(…) in S iff q(…) in L
	S  = L, Continued
	Inductive Step
	Inductive Step: L  ? S
	Inductive Step --- Concluded
	More Proofs
	Comparison of Stable and Well-Founded

