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Conjunctive Queries

A CQ is a single Datalog rule, with all 
subgoals assumed to be EDB.
Meaning of a CQ is the mapping from 
databases (the EDB) to the relation 
produced for the head predicate by 
applying that rule to the EDB.



3

Containment of CQ’s

Q1 ⊆ Q2 iff for all databases D, Q1(D) ⊆
Q2(D).
Example:

Q1: p(X,Y) :- arc(X,Z) & arc(Z,Y)

Q2: p(X,Y) :- arc(X,Z) & arc(W,Y)

DB is a graph; Q1 produces paths of 
length 2, Q2 produces pairs of nodes with 
an arc out and in, respectively.
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Example --- Continued

Whenever there is a path from X to Y, 
it must be that X has an arc out, and Y
an arc in.
Thus, every fact (tuple) produced by 
Q1 is also produced by Q2.
That is, Q1 ⊆ Q2.
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Why Care About CQ Containment?

Important optimization: if we can break 
a query into terms that are CQ’s, we 
can eliminate those terms contained in 
another.

Especially important when we deal with 
integration of information: CQ containment 
is almost the only way to tell what 
information from sources we don’t need.
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Why Care? --- Continued

Containment tests imply equivalence-
of-programs tests.

Any theory of program (query) design or 
optimization requires us to know when 
programs are equivalent.
CQ’s, and some generalizations to be 
discussed, are the most powerful class of 
programs for which equivalence is known 
to be decidable.
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Why Care --- Concluded

Although CQ theory first appeared at a 
database conference, the AI community 
has taken CQ’s to heart.
CQ’s, or similar logics like description 
logic, are used in a number of AI 
applications.

Again --- their design theory is really 
containment and equivalence.
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Testing Containment

Two approaches:
1. Containment mappings.
2. Canonical databases.

Really the same in the simple CQ case 
covered so far.
Containment is NP-complete, but CQ’s 
tend to be small so here is one case 
where intractability doesn’t hurt you.
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Containment Mappings

A mapping from the variables of CQ 
Q2 to the variables of CQ Q1, such 
that:

1. The head of Q2 is mapped to the head of 
Q1.

2. Each subgoal of Q2 is mapped to some 
subgoal of Q1 with the same predicate.
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Important Theorem

There is a containment mapping from 
Q2 to Q1 if and only if Q1 ⊆ Q2.
Note that the containment mapping is 
opposite the containment --- it goes 
from the larger (containing CQ) to the 
smaller (contained CQ).
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Example

Q1: p(X,Y):-r(X,Z) & g(Z,Z) & r(Z,Y)
Q2: p(A,B):-r(A,C) & g(C,D) & r(D,B)
Q1 looks for:

Q2 looks for:
X YZ

A BDC

Since C=D is possible,
expect Q1 ⊆ Q2.
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Example --- Continued

Q1: p(X,Y):-r(X,Z) & g(Z,Z) & r(Z,Y)

Q2: p(A,B):-r(A,C) & g(C,D) & r(D,B)

Containment mapping: m(A)=X; m(B)=Y; 
m(C)=m(D)=Z.
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Example ---Concluded

Q1: p(X,Y):-r(X,Z) & g(Z,Z) & r(Z,Y) 
Q2: p(A,B):-r(A,C) & g(C,D) & r(D,B)

No containment mapping from Q1 to Q2.
g(Z,Z) can only be mapped to g(C,D).
• No other g subgoals in Q2.

But then Z  must map to both C and D ---
impossible.

Thus, Q1 properly contained in Q2.
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Another Example
Q1: p(X,Y):-r(X,Y) & g(Y,Z)
Q2: p(A,B):-r(A,B) & r(A,C)
Q1 looks for:

Q2 looks for:
X ZY

A B

C
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Example --- Continued
And not

Q1: p(X,Y):-r(X,Y) & g(Y,Z)

Q2: p(A,B):-r(A,B) & r(A,C)

Containment mapping: m(A)=X; 
m(B)=m(C)=Y.

Notice two
subgoals can
map to one.

every subgoal
need be a
target.
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Example ---Concluded

Q1: p(X,Y):-r(X,Y) & g(Y,Z)       
Q2: p(A,B):-r(A,B) & r(A,C)
No containment mapping from Q1 to Q2.

g(Y,Z) cannot map anywhere, since there is no g
subgoal in Q2.

Thus, Q1 properly contained in Q2.
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Proof of Containment-Mapping 
Theorem --- (1)

First, assume there is a CM m : Q2->Q1.
Let D be any database; we must show 
that Q1(D) ⊆ Q2(D).
Suppose t is a tuple in Q1(D); we must 
show t is also in Q2(D).
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Proof --- (2)

Since t is in Q1(D), there is a 
substitution s from the variables of 
Q1 to values that:

1. Makes every subgoal of Q1 a fact in D.
More precisely, if p(X,Y,…) is a 
subgoal, then [s(X),s(Y),…] is a tuple 
in the relation for p.

2. Turns the head of Q1 into t.
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Proof --- (3)

Consider the effect of applying m and 
then s to Q2.
head of Q2 :- subgoal of Q2

m m
head of Q1 :- subgoal of Q1

s s
t tuple of D

s°m maps
each sub-
goal of Q2
to a tuple
of D.

And the head of Q2 becomes
t, proving t is also in Q2(D); i.e., Q1 ⊆ Q2.
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Proof of Converse --- (1)

Now, we must assume Q1 ⊆ Q2, and 
show there is a containment mapping 
from Q2 to Q1.
Key idea --- frozen CQ Q :

1. For each variable of Q, create a 
corresponding, unique constant.

2. Frozen Q is a DB with one tuple formed 
from each subgoal of Q, with constants in 
place of variables.
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Example: Frozen CQ

p(X,Y):-r(X,Z) & g(Z,Z) & r(Z,Y)

Let’s use lower-case letters as constants 
corresponding to variables.
Then frozen CQ is:

Relation R for predicate r = {(x,z), (z,y)}.
Relation G for predicate g = {(z,z)}.
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Converse --- (2)

Suppose Q1 ⊆ Q2, and let D be the 
frozen Q1.
Claim: Q1(D) contains the frozen head
of Q1 --- that is, the head of Q1 with 
variables replaced by their 
corresponding constants.

Proof: the “freeze” substitution makes all 
subgoals in D, and makes the head 
become the frozen head. 
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Converse --- (3)

Since Q1 ⊆ Q2, the frozen head of Q1 
must also be in Q2(D).
Thus, there is a mapping s from 
variables of Q2 to D that turns subgoals 
of Q2 into tuples of D and turns the 
head of Q2 into the frozen head of Q1.
But tuples of D are frozen subgoals of 
Q1,  so s followed by “unfreeze” is a 
containment mapping from Q2 to Q1.
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In Pictures

Q2: h(X,Y) :- … p(Y,Z) …
s s

h(u,v) p(a,b) D
freeze

Q1: h(U,V) :- … p(A,B) …

s followed by inverse of freeze maps each
subgoal p(Y,Z) of Q2 to a subgoal p(A,B) of
Q1 and maps h(X,Y) to h(U,V).
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Dual View of CM’s

Instead of thinking of a CM as a 
mapping on variables, think of a CM 
as a mapping from atoms to atoms.
Required conditions:

1. The head must map to the head.
2. Each subgoal maps to a subgoal.
3. As a consequence, no variable is mapped 

to two different variables.
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Canonical Databases

General idea: test Q1 ⊆ Q2 by checking 
that Q1(D1) ⊆ Q2(D1),…, Q1(Dn) ⊆
Q2(Dn), where D1,…,Dn are the canonical 
databases.
For the standard CQ case, we only need 
one canonical DB --- the frozen Q1.
But in more general forms of queries, 
larger sets of canonical DB’s are needed.
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Why Canonical DB Test Works

Let D = frozen body of Q1; h = frozen 
head of Q1.
Theorem: Q1 ⊆ Q2 iff Q2(D) contains h.
Proof (only if): Suppose Q2(D) does not 
contain h.  Since Q1(D) surely contains 
h, it follows that Q1 is not contained in 
Q2.
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Proof (if):

Suppose Q2(D) contains h.
Then there is a mapping from the 
variables of Q2 to the constants of D that 
maps:

The head of Q2 to h.
Each subgoal of Q2 to a frozen subgoal of Q1.

This mapping, followed by “unfreeze,” is a 
containment mapping, so Q1 ⊆ Q2.
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Sariaya’s Algorithm

Containment of CQ’s is NP-complete.
But Sariaya’s algorithm is a linear-time 
test for the common situation where Q1 
(the contained query) has no more than 
two subgoals with any one predicate.
Reduction to 2SAT.
We’ll give a simple, quadratic version.



30

Saraiya’s Algorithm --- (2)

1. For any subgoal p(…) of Q2, where 
there is only one p –subgoal of Q1, we 
know exactly where p(…) must map.

2. If there is a subgoal of Q2 that can 
map to two different subgoals of Q1, 
assume one choice, and chase down 
the “consequences.”
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Consequences

1. If p(X1,…,Xn) is known to map to 
p(Y1,…,Yn), then we know each 
vaiable Xi maps to Yi.

2. If p(X1,…,Xn) is a subgoal of Q2, and 
we know Xi maps to some variable Z, 
and only one of the p –subgoals of Q1 
has Z in the i th component, then 
p(X1,…,Xn) must map to that subgoal. 
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Sariaya’s Algorithm --- (3)

Eventually, one of two things happens:
1. We derive a contradiction --- a subgoal or 

variable that must map to two different 
things.

2. We close the set of inferences --- there is 
no contradiction, and no more 
consequences.
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Case (1): Contradiction

In this case, we go back and try the 
other choice if there is one, and fail if 
there is no other choice.
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Case (2): Closure

In this case, we have found some 
variables and subgoals of Q2 that can 
be mapped as chosen, with no effect on 
any remaining subgoals or variables.
Fix these choices, and consider any 
remaining subgoals.
If all subgoals are now mapped, we 
have found a CM and are done.
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Example

Q2: p(X) :- a(X,Y) & b(Y,Z) & b(Z,W) & a(W,X)

Q1: p(B) :- a(A,B) & a(B,A) & b(A,C) & b(C,B)

Start by choosing
a(X,Y) -> a(A,B)

Then X->A
and Y->B

Now, b(Y,Z) must
map to some b(B,?).
But both choices do
not have first com-
ponent B. 
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Example --- Continued

Q2: p(X) :- a(X,Y) & b(Y,Z) & b(Z,W) & a(W,X)

Q1: p(B) :- a(A,B) & a(B,A) & b(A,C) & b(C,B)

We thus know that
in any CM, a(X,Y)
maps to a(B,A).
Thus, X->B and
Y->A.

Then b(Y,Z)
must map to
b(A,C), and
Z->C.

Thus, b(Z,W) ->
b(C,B), and W->B

a(W,X) cannot map to a(A,B)
[W doesn’t map to A] or to
a(B,A) [X doesn’t map to A].
Complete failure.
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Example ---Slight Variation

Q2: p(X) :- a(X,Y) & b(Y,Z) & b(Z,W) & a(W,X)

Q1: p(B) :- a(A,B) & a(B,A) & b(A,C) & b(C,A)

We thus know that
in any CM, a(X,Y)
maps to a(B,A).
Thus, X->B and
Y->A.

Then b(Y,Z)
must map to
b(A,C), and
Z->C.

Thus, b(Z,W) ->
b(C,B), and W->A

Now, a(W,X) -> a(A,B), and
there are no more consequen-
ces.  We have a CM.
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