Using Views to Implement Datalog Programs

Inverse Rules Duschka's Algorithm

Inverting Rules

 Idea: "invert" the view definitions to give the global predicates definitions in terms of views and function symbols.

Plug the globals' definitions into the body of the query to get a direct expansion of the query into views.

Even works when the query is a program.

Inverting Rules --- (2)

But the query may have function symbols in its solution, and these symbols actually have no meaning.
We therefore need to get rid of them.
Trick comes from Huyn -> Qian -> Duschka.

Skolem Functions

- Logical trick for getting rid of existentially quantified variables.
 In terms of safe Datalog rules:
 For each local (nondistinguished) variable
 - X, pick a new function symbol f (the Skolem constant).
 - Replace X by f (head variables).

Example

 Intuition: for v(X,Y) to be true, there must be some value, depending on X and Y, that makes the above body true.

HQD Rule Inversion

- Replace a Skolemized view definition by rules with:
 - 1. A subgoal as the head, and
 - 2. The view itself as the only subgoal of the body.

Example

v(X,Y) :- p(X,f(X,Y)) & p(f(X,Y),Y)

becomes:

p(X, f(X, Y)) :- v(X, Y)p(f(X, Y), Y) :- v(X, Y)

Running Example: Maternal Ancestors

Global predicates: • m(X,Y) = "Y is the mother of X." • f(X,Y) = "Y is the father of X." manc rules: **r1:** manc(X,Y) :- m(X,Y)r2: manc(X,Y) :- f(X,Z) & manc(Z,Y) **r3:** manc(X,Y) :- m(X,Z) & manc(Z,Y)

Example --- Continued

The views: v1(X,Y) := f(X,Z) & m(Z,Y)v2(X,Y) := m(X,Y)Inverse rules: **r4:** f(X,q(X,Y)) := v1(X,Y)**r5:** m(q(X,Y),Y) := v1(X,Y)**r6:** m(X,Y) := v2(X,Y)

Evaluating the Rules

 Treat views as EDB.
 Apply seminaïve evaluation to query (Datalog program).
 In general, function symbols -> no convergence.

Evaluating the Rules

- But here, all function symbols are in the heads of global predicates.
- These are like EDB as far as the query is concerned, so no nested function symbols occur.
- One level of function symbols assures convergence.

Example

r1: manc(X,Y) :- m(X,Y)r2: manc(X,Y) :- f(X,Z) & manc(Z,Y) r3: manc(X,Y) :- m(X,Z) & manc(Z,Y) r4: f(X,q(X,Y)) :- v1(X,Y)r5: m(g(X,Y),Y) :____ v1(X,Y)**r6:** m(X,Y) := v2(X,Y)Assume v1(a,b).

Example --- (2)

r1: manc(X,Y) :- m(X,Y)r2: manc(X,Y) : f(X,Z) & manc(Z,Y) r3: manc(X,Y) (X,Y) (X,Z) & manc(Z,Y) r4: f(a,g(a,b)) :- v1(a,b)
r5: m(g(a,b),b) :- v1(a,b) **r6:** m(X,Y) := v2(X,Y)Assume v1(a,b).

Example --- (3)

r1: manc(g(a,b),b) :- m(g(a,b),b)r2: manc(X,Y) :- f(X,Z) & manc(Z,Y) r3: manc(X,Y) :- m(X,Z) & manc(Z,Y) r4: f(a,g(a,b)) :- v1(a,b) **r5:** m(q(X,Y),Y) := v1(X,Y)**r6:** m(X,Y) := v2(X,Y)Assume v1(a,b).

Example --- (4)

r1: manc(X,Y) :- m(X,Y)**r2:** manc(a,b) :- f(a,g(a,b)) & manc(q(a,b),b)**r3:** manc(X,Y) :- m(X,Z) & manc(Z,Y) **r4:** f(X,q(X,Y)) := v1(X,Y)**r5:** m(q(X,Y),Y) := v1(X,Y)**r6:** m(X,Y) := v2(X,Y)Assume v1(a,b).

Example --- Concluded

Notice that given v1(a,b), we were able to infer manc(a,b), even though we never found out what the value of g(a,b) [the father of a] is.

Rule-Rewriting

 Duschka's approach moves the function symbols out of the seminaïve evaluation and into a rule-rewriting step.

- In effect, the function symbols combine with the predicates.
 - Possible only because there are never any nested function symbols.

Necessary Technique: Unification

 We unify two atoms by finding the simplest substitution for the variables that makes them identical.

Linear-time algorithm known.

Example

 \diamond The unification of p(f(X,Y), Z) and p(A,q(B,C)) is p(f(X,Y),q(B,C)). • Uses A -> f(X,Y); Z -> g(B,C); identity mapping on other variables. (, X, X) and p(Y, f(Y)) have no unification.

Neither do p(X) and q(X).

Elimination of Function Symbols

Repeat:

- 1. Take any rule with function symbol(s) in the head.
- 2. Unify that head with any subgoals, of any rule, with which it unifies.
 - But first make head variables be new, unique symbols.
- Finally, replace IDB predicates + function-symbol patterns by new predicates.

Example

r1: manc(X,Y) :- m(X,Y)r2: manc(X,Y) :- f(X,Z) & manc(Z,Y) r3: manc(X,Y) :-/m(X,Z) & manc(Z,Y) r4: f(X,g(X,Y))/:- v1(X,Y) r5: m(g(X,Y),Y) :- v1(X,Y) r6: m(X,Y) :- v2(X,Y) Unify

Example --- (2)

r2: manc(X,Y) :- f(X,Z) & manc(Z,Y)
r4: f(A,g(B,C)) :-

Important point: in the unification of *X* and *A*, any variable could be used, but it must appear in both these places.

Example --- (3)

Example --- (4)

Now we have a new pattern: manc(g(A,B),C).

 We must unify it with manc subgoals in r2, r3, r7, and r9.

 r2 and r7 yield nothing new, but r3 and r9 do.

Example --- (5)

r3: manc(X,Y) :- m(X,Z) & manc(Z,Y) r9:manc(g(A,B),Y) := m(g(A,B),Z) &manc(Z,Y)manc(q(C,D),E)r10: manc(X,Y) :- m(X,g(A,B)) & manc(q(A,B),Y)**r11:** manc(q(A,B),Y) :m(q(A,B),q(C,D))& manc(q(C,D),Y)

Cleaning Up the Rules

- 1. For each IDB predicate (manc in our example) introduce a new predicate for each function-symbol pattern.
- 2. Replace EDB predicates (*m* and *f* in our example) by their definition in terms of views, but only if no function symbols are introduced.

Justification for (2)

A function symbol in a view is useless, since the source (stored) data has no tuples with function symbols.

A function symbol in an IDB predicate has already been taken care of by expanding the rules using all functionsymbol patterns we can construct.

New IDB Predicates

In our example, we only need mancl to represent the pattern manc(g(.,.),.).
 That is: mancl(X,Y,Z) = manc(g(X,Y),Z).

Example --- r1

Substitution OK; yields
manc(X,Y) :- v2(X,Y)

Illegal --- yields g in head. Note the case manc(g(.,.),.) is taken care of by r8.

Example --- r2 and r3

r2: manc(X,Y) :- f(X,Z) & manc(Z,Y)
r3: manc(X,Y) :- m(X,Z) & manc(Z,Y)
r4: f(X,g(X,Y)) :- v1(X,Y)
r5: m(g(X,Y),Y) :- v1(X,Y)
r6: m(X,Y) :- v2(X,Y)

Illegal --- put
function symbolOK; yields
manc(X,Y)g in manc.manc(X,Y)manc(Z,Y)

Example --- r4, r5, r6

The inverse rules have played their role and do not appear in the final rules.

Example --- r7

r7: manc(X,Y) :- f(X,g(B,C)) &
 manc(g(B,C),Y)
r4: f(X,g(X,Y)) :- v1(X,Y)

Unify. Note no function symbols are introduced, but X = B.

Replace by
mancl(B,C,Y).

Example --- r8 and r9

r8: manc(g(A,B),Y) :- m(g(A,B),Y)r9:manc(g(A,B),Y):-m(g(A,B),Z) &r5: m(g(X,Y),Y) :- v1(X,Y) manc(Z,Y) Unify; set Unify; set Become B = Z. mancl(A,B,Y) B = Y. **r8:** manc1(A,Y,Y) :- v1(A,Y)r9:mancl(A,Z,Y) := vl(A,Z)& manc(Z,Y)

Example --- r10 and r11

No substitutions possible ---- unifying m -subgoal with head of r5 or r6 introduces a function symbol into the view subgoal.

Summary of Rules

r1: manc(X,Y) :- v2(X,Y)**r3:** manc(X,Y) :- v2(X,Z) & manc(Z,Y) **r7:** manc(X,Y) :- v1(X,C) & mancl(X,C,Y)**r8:** mancl(A,Y,Y) :- v1(A,Y)r9:mancl(A,Z,Y) :- vl(A,Z)&manc(Z,Y)

Finishing Touch: Replace manc1

Substitute the bodies of r8 and r9 for the manc1 subgoal of r7. **r7:** manc(X,Y) :- v1(X,C) & mancl(X,C,Y)r8: mancl(A, Y, Y) :- v1(A, Y) r9:mancl(A,Z,Y) := vl(A,Z)&manc(Z,Y)**Becomes** Becomes another v1(X,C) & manc(C,Y) v1(X,C).

36

Final Rules

- r1: manc(X,Y) := v2(X,Y)
- r3: manc(X,Y) :- v2(X,Z) & manc(Z,Y)
- **r7-8:** manc(X,Y) :- v1(X,Y)