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More Clustering

CURE Algorithm
Non-Euclidean Approaches
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The CURE Algorithm

Problem with BFR/k -means:
Assumes clusters are normally distributed 
in each dimension.
And axes are fixed --- ellipses at an angle 
are not OK.

CURE:
Assumes a Euclidean distance.
Allows clusters to assume any shape.
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Example: Stanford Faculty Salaries
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Starting CURE

1. Pick a random sample of points that fit 
in main memory.

2. Cluster these points hierarchically ---
group nearest points/clusters.

3. For each cluster, pick a sample of 
points, as dispersed as possible.

4. From the sample, pick representatives 
by moving them (say) 20% toward 
the centroid of the cluster.
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Example: Initial Clusters
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Example: Pick Dispersed Points
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Example: Pick Dispersed Points
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Finishing CURE

Now, visit each point p in the data set.
Place it in the “closest cluster.”

Normal definition of “closest”: that cluster 
with the closest (to p ) among all the 
sample points of all the clusters.
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Curse of Dimensionality

One way to look at it: in large-
dimension spaces, random vectors are 
perpendicular.  Why?

Argument #1: Lots of 2-dim subspaces.  
There must be one where the vectors’ 
projections are almost perpendicular.
Argument #2: Expected value of cosine 
of angle is 0.
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Cosine of Angle Between 
Random Vectors

Assume vectors emanate from the origin 
(0,0,…,0).
Components are random in range   [-1,1].
(a1,a2,…,an).(b1,b2,…,bn) has expected value 
0 and a standard deviation that grows as √n.
But lengths of both vectors grow as √n.
So dot product around √n/ (√n * √n) = 1/√n.
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Random Vectors --- Continued

Thus, a typical pair of vectors has an 
angle whose cosine is on the order of 
1/√n.
As n -> ∞, that’s 0; i.e., the angle is 
about 90°.
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Interesting Consequence

Suppose “random vectors are perpendicular,” 
even in non-Euclidean spaces.
Suppose we know the distance from A to B, 
say d (A,B ), and we also know d (B,C ), but 
we don’t know d (A,C ).
Suppose B and C are fairly close, say in the 
same cluster.
What is d (A,C )?
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Diagram of Situation
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Assuming points lie in a plane:
d (A,B )2 + d (B,C )2 = d (A,C )2
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Important Point

Why do we assume AB is perpendicular 
to AC, and not that either of the other 
two angles are right-angles?

1. AB and AC are not “random vectors”; they 
each go to points that are far away from A 
and close to each other.

2. If AB is longer than AC, then it is angle 
ACB that is right, but both ACB and ABC 
are approximately right-angles.
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Dealing With a Non-Euclidean 
Space

Problem: clusters cannot be represented by 
centroids.
Why? Because the “average” of “points” 
might not be a point in the space.
Best substitute: the clustroid = point in the 
cluster that minimizes the sum of the squares 
of distances to the points in the cluster.
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Representing Clusters in Non-
Euclidean Spaces

Recall BFR represents a Euclidean cluster 
by N, SUM, and SUMSQ.
A non-Euclidean cluster is represented by:

N.
The clustroid.
Sum of the squares of the distances from 
clustroid to all points in the cluster.
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Example of CoD Use

Problem: in non-Euclidean space, we 
want to decide whether to merge two 
clusters.

Each cluster represented by N, clustroid, 
and “SUMSQ.”
Also, SUMSQ for each point in the cluster, 
even if it is not the clustroid.

Merge if SUMSQ for new cluster is “low.”
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Estimating SUMSQ

p

other clust-
roid, b

p ’s clustroid, c
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Suppose p Were the Clustroid
of Combined Cluster

It’s SUMSQ would be the sum of:
1. Old SUMSQ(p) [for old cluster containing p].
2. SUMSQ(b) plus d (p,b)2 times number of 

points in b ’s cluster.

Critical point: vector p ->b assumed 
perpendicular to vectors from b to all 
other points in its cluster --- justifies (2).
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Combining Clusters --- Continued

We can thus estimate SUMSQ for each 
point in the combined cluster.  Take the 
point with the least SUMSQ as the 
clustroid of the new cluster --- provided 
that SUMSQ is small enough.
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The GRGPF Algorithm

From Ganti et al. --- see reading list.
Works for non-Euclidean distances.
Works for massive (disk-resident) data.
Hierarchical clustering.
Clusters are grouped into a tree of disk 
blocks (like a B-tree or R-tree).
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Information Retained About a 
Cluster

1. N, clustroid, SUMSQ.
2. The p points closest to the clustroid, 

and their values of SUMSQ.
3. The p points of the cluster that are 

furthest away from the clustroid, and 
their SUMSQ’s.
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At Interior Nodes of the Tree

Interior nodes have samples of the 
clustroids of the clusters found at 
descendant leaves of this node.
Try to keep clusters on one leaf block 
close, descendants of a level-1 node close, 
etc.
Interior part of tree kept in main memory.
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Picture of the Tree
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Initialization

Take a main-memory sample of points.
Organize them into clusters 
hierarchically.
Build the initial tree, with level-1 interior 
nodes representing clusters of clusters, 
and so on.
All other points are inserted into this 
tree.
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Inserting Points

Start at the root.
At each interior node, visit one or more 
children that have sample clustroids
near the inserted point.
At the leaves, insert the point into the 
cluster with the nearest clustroid.
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Updating Cluster Data

Suppose we add point X to a cluster.
Increase count N by 1.
For each of the 2p + 1 points Y whose 
SUMSQ is stored, add d (X,Y )2.
Estimate SUMSQ for X.
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Estimating SUMSQ(X )

If C  is the clustroid, SUMSQ(X ) is, by 
the CoD assumption:                         
Nd (X,C )2 + SUMSQ(C )

Based on assumption that vector from X
to C is perpendicular to vectors from C to 
all the other nodes of the cluster.

This value may allow X to replace one 
of the closest or furthest nodes.
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Possible Modification to 
Cluster Data

There may be a new clustroid --- one of 
the p closest points --- because of the 
addition of X.
Eventually, the clustroid may migrate 
out of the p closest points, and the 
entire representation of the cluster 
needs to be recomputed.
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Splitting and Merging Clusters

Maintain a threshold for the radius of a 
cluster = √(SUMSQ/N ).
Split a cluster whose radius is too large.
Adding clusters may overflow leaf 
blocks, and require splits of blocks up 
the tree.

Splitting is similar to a B-tree.
But try to keep locality of clusters.
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Splitting and Merging --- (2)

The problem case is when we have split 
so much that the tree no longer fits in 
main memory.
Raise the threshold on radius and 
merge clusters that are sufficiently 
close.
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Merging Clusters

Suppose there are nearby clusters with 
clustroids C and D, and we want to 
consider merging them.
Assume that the clustroid of the 
combined cluster will be one of the p
furthest points from the clustroid of one 
of those clusters.
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Merging --- (2)

Compute SUMSQ(X ) [from the cluster 
of C ] for the combined cluster by 
summing:

1. SUMSQ(X ) from its own cluster.
2. SUMSQ(D ) + N [d (X,C )2 + d (C,D )2].

Uses the CoD to reason that the distance 
from X to each point in the other cluster 
goes to C, makes a right angle to D, and 
another right angle to the point.
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Merging --- Concluded

Pick as the clustroid for the combined 
cluster that point with the least SUMSQ.
But if this SUMSQ is too large, do not 
merge clusters.
Hope you get enough mergers to fit the 
tree in main memory.
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Fastmap

Not a clustering algorithm --- rather, a 
method for applying multidimensional 
scaling.

That is, mapping the points onto a small-
dimension space, so the CoD does not 
apply.
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Fastmap --- (2)

Assumes non-Euclidean space.
But like GRGFP pretends it is working in 2-
dimensional Euclidean space when it is 
convenient to do so.

Goal: map n points in much less than 
O(n 2) time.

I.e., you cannot compute distances 
between each pair of points and place 
points in k-dim. space to minimize error.
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Fastmap --- Key Idea

Create a “dimension” in non-Euclidean 
space by:

1. Pick a pair of points A and B that are far 
apart.

Start with random A; pick most distant B.

2. Treat AB as an “axis” and project all 
points onto AB, using the law of cosines.



38

Projecting Point C Onto AB
C

d(B,C)

d(A,B)

d(A,C)

BA
x

x = [d 2(A,C) + d 2(A,B) – d 2(B,C)]/2d (A,B)
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Revising Distances

Having computed the position of every 
point along the pseudo-axis AB, we 
need to lower the distances between 
points in the “other dimensions.”
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Picture
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But …

We can’t afford to compute new 
distances for each pseudo-dimension.

It would take O(n 2) time.

Rather, for each pseudo-dimension, 
store the position along the pseudo-axis 
for each point, and adjust the distance 
between points by square-subtract-sqrt
only when needed.

I.e., one of the points is an axis-end.
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Fastmap --- Summary

Pick a number of dimensions k.
FOR i = 1 TO k DO BEGIN

Pick a pseudo-axis AiBi;

Compute projection of each

point onto this pseudo-axis;

END;

Each step is O(ni ); total O(nk 2).
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