
1

The Bucket Algorithm

� We can \answer queries using views" by trying
all CQ's with no more (view) subgoals than the
query has subgoals.

� However, a more organized exploration of the
possibilities, called the bucket algorithm looks
at how views can \cover" each of the query
subgoals and each variable of the query.

� Basic idea due to Levy; improved to consider
the query variables as well as the subgoals by
Prasenjit Mitra (and independently by Levy
and Pottinger).

Limits on the Containment Mapping
From Query to Expansion

The key to the bucket algorithm is to understand
what can happen to variables in the query, when they
are mapped to variables in the expansion.

� Each subgoal of the query must be covered by
some view in the solution. That is, the query
subgoal must map to some subgoal in some
expansion, or the expansion is not contained in
the query.

� We must di�erentiate between distinguished

variables (those that appear in the query head
or the head of a view de�nition) and
nondistinguished variables (others).

� We must also di�erentiate between unique

nondistinguished variables (those that appear
only once in the query) and shared variables
(which appear more than once).

R1. A distinguished variable in the query must map
to a distinguished variable (of some view) in
the expansion.

R2. A shared variable X must either map to a
distinguished variable of a view expansion or all
query subgoals involving X must map to the
same nondistinguished variable in the
expansion of a single view.

{ The reason is that two view expansions
can never have the same nondistinguished
variable.

{ Even if the local variable name is the same
in the view de�nition, the expansions must
use di�erent names.

2

Examples

Figure 0.1 shows one consequence of rules R1 and R2.

v(X,Y)

p(X,W) q(W,Z) r(Z,Y)

answer(U,V) :− r(A,B) s(B,C).

Y

v’(. . . Y . . .)

Query

Expansion

Solution

Figure 0.1: Covering the query subgoal r(A;B)

� A is a unique, nondistinguished variable. It can
map to the nondistinguished variable Z in the
expansion of view v.

� B is a shared, nondistinguished variable. One
possible treatment, shown in Fig. 0.1, is that B
maps to a distinguished variable, Y , and other
occurrences of B, suggested by the subgoal
s(B;C), are mapped so that occurrence of B
maps to a distinguished variable of some other
view.

{ Note that in designing the solution, we
have the freedom to equate the variables
of the views, and thus to use the same
distinguished variable in two or more view
expansions.

{ This capability makes it possible to map
the occurrences of B to the same variable,
coming from expansions of di�erent views.

Figure 0.2 suggests what happens if a shared variable
is forced to map to a nondistinguished variable in a
view expansion. The s subgoal now has noplace to go,
since there is no s subgoal in the expansion of v, and
another expansion could not have Z as a variable.

v(X,Y)

p(X,W) q(W,Z) r(Z,Y)

answer(U,V) :− q(A,B) s(B,C).Query

Expansion

Solution

??

Figure 0.2: We cannot map B to local variable Z

On the other hand, if the other subgoal(s) with B
can also map to subgoals in the same expansion, then
B can be \covered." Figure 0.3 shows what happens
when the s subgoal becomes and r subgoal.

3

v(X,Y)

p(X,W) q(W,Z) r(Z,Y)

answer(U,V) :− q(A,B) r(B,C).Query

Expansion

Solution

Figure 0.3: Now, both subgoals with B can map to
subgoals in the same view expansion

Now, consider what happens when we have to map a
distinguished variable of the query, such as A in
Fig. 0.4. It is essential that A map to a distinguished
variable such as X of a view expansion, because that
is the only way the target variable can appear in the
head of the solution.

v(X,Y)

p(X,W) q(W,Z) r(Z,Y)

answer(A,D) :− p(A,B) q(B,C).Query

Expansion

Solution . . .answer(X,V) :−

Figure 0.4: Handling a distinguished variable

Buckets for Subgoals and Variables

Each shared variable and each subgoal gets a
\bucket" of views (and one or more subgoals within
that view's expansion) whose expansion can cover
that subgoal or the set of subgoals that have the
given variable. Here are the bucket-construction
rules:

1. If p(A1; : : : ; An) is a subgoal, then its bucket
includes every view v, and every p-subgoal
p(X1; : : : ; Xn) in the expansion of v such that:

(a) There is a containment mapping from
A1; : : : ; An to X1; : : : ; Xn. (Note: the only
reason there might not be is if there were
duplicate occurrences of variables among
the A's.)

(b) If Ai is a distinguished variable of the
query, then Xi is a distinguished variable
of the de�nition of v.

(c) If Ai is a shared variable, then Xi is a
distinguished variable of the de�nition of
v.

4

2. If B is a shared variable, then the bucket for B
includes each view v and each set of subgoals in
the expansion of v such that there is a
containment mapping from all the query
subgoals containing B to that subset of the
subgoals in v's expansion.

� The containment mapping must map
distinguished (of the query) to
distinguished (of the view de�nition).

Example

Consider the following views v and w, and query:

v(X,Y) :- p(X,Z) & p(Z,Y)

w(U,V) :- p(U,S) & p(S,T) & p(T,V)

query(A,B) :- p(A,C) & p(C,D) & p(D,E) &

p(E,F) & p(F,G) & p(G,B)

Think of p as \parent," v as \grandparent," and w as
\great-grandparent."

� The bucket for p(A;C) is empty, because A is
distinguished and C is shared. But no view
subgoal has two distinguished variables.

� The bucket for p(C;D) is empty because both
variables are shared, and again no view subgoal
has two distinguished variables.

� Similarly, the buckets for the other query
subgoals are empty.

� The bucket for shared variable C includes
fp(X;Z); p(Z; Y)g from v, and
fp(U; S); p(S; T)g from w.

{ It does not include fp(S; T); p(T; V)g
from w, because p(A;C) would have to
map to p(S; T), and A is distinguished,
but S is not.

� The bucket for shared variable D includes
fp(X;Z); p(Z; Y)g from v, and both
fp(U; S); p(S; T)g and fp(S; T); p(T; V)g from
w.

{ Note that we cannot at this point
guarantee a consistent treatment of the
variables C and E that are involved in the
mapping of the subgoals with D; a more
careful analysis can check that the
requirements of these shared variables can
be met in conjuction with D's
requirements.

5

We have to put together some views whose
expansions cover all the subgoals.

1. One possibility is to use expansions of v as the
buckets for shared variables C, E, and G.

� The other shared variables fortunately cna
map to distinguished variables of the
expansions, so we can handle that sharing
by equating the variables in the view
subgoals of the solution.

� Likewise, the distinguished variables of the
query can map to distinguished variables
of the expansions.

� The resulting solution:

query(A,B) :- v(A,H) & v(H,I) & v(I,B)

2. Another solution uses one expansion of w to
cover the buckets for both C and D and a
second expansion of w for F and G.

� Again, the sharing of E can be handled by
using the same variable in the two
subgoals of the solution, and the
distinguished variables of the query
fortuitously map to distinguished variables
of the view expansions.

� The solution:

query(A,B) :- w(A,H) & w(H,B)

3. Notice there is no covering with one use of v
and one of w. However, we do it, one query
subgoal needs to be covered by a third view
expansion, and there is no way to make both
variables of the \lost" subgoal map to
distinguished variables of that expansion.

