Getting All You Can Out of Views

- The situation is that we are given a collection of views and a query (possibly recursive).
 - ♦ We want to find all the answers to the query that we can using the views.
- This technology, due to Oliver Duschka, comes from "Infomaster," a project of Prof. Mike Genesereth.

Example

We have a parent EDB relation, with ancestors defined in the usual way:

anc(X,Y) :- par(X,Y) anc(X,Y) :- par(X,Z) & anc(Z,Y)

but the only view we have tells about grandparents:

v1(X,Y) := par(X,Z) & par(Z,Y)

If we want the most ancestor facts that we can obtain from the view v_1 (not using the EDB, which is only abstract in applications like IM), then we should use the program:

> anc(X,Y) :- v1(X,Y) anc(X,Y) :- v1(X,Z) & anc(Z,Y)

which gives us the even-distance ancestors that can be composed of facts in v_1 , and nothing else.

Key Idea: Skolemization

- 1. Replace existential variables in the view definitions by new function symbols applied to the variables of the head.
 - The function symbols so used are called Skolem functions; it is a standard trick of logic to get rid of existential variables.
- 2. *Invert* the view definitions, so they are EDB predicates with function symbols defined in terms of a view.
 - Remember that the "EDB" predicates are really global, abstract concepts as in IM, not stored relations.

Example

To invert the view

$$v1(X,Y) := par(X,Z) \& par(Z,Y)$$

we get:

par(X,f(X,Y)) := v1(X,Y)par(f(X,Y),Y) := v1(X,Y)

• Notice that :- is a misnomer as far as the view definition is concerned, but in the inverse rules it is simply an assertion that there are no bogus facts in the view.

A More Complex Example

Suppose we have EDB predicates (global concepts) f(X, Y) and m(X, Y), meaning that Y is the father or mother, respectively, of X.

• Our query is to find all "maternal ancestors" of an individual X, i.e., all females who are ancestors:

> $r_1: manc(X,Y) := m(X,Y)$ $r_2: manc(X,Y) := f(X,Z) \& manc(Z,Y)$ $r_3: manc(X,Y) := m(X,Z) \& manc(Z,Y)$

The available views are: v₁(X,Y) :- f(X,Z) & m(Z,Y) v₂(X,Y) :- m(X,Y)

Invert the Views

 $\begin{array}{l} r_4 \colon \texttt{f}(\texttt{X},\texttt{g}(\texttt{X},\texttt{Y})) := v_1(\texttt{X},\texttt{Y}) \\ r_5 \colon \texttt{m}(\texttt{g}(\texttt{X},\texttt{Y}),\texttt{Y}) := v_1(\texttt{X},\texttt{Y}) \\ r_6 \colon \texttt{m}(\texttt{X},\texttt{Y}) := v_2(\texttt{X},\texttt{Y}) \end{array}$

Evaluating the Rules

In a sense, that's all there is to it. Treat all predicates except the views as IDB, and evaluate.

- Seminaive evaluation can produce tuples with function symbols, but these cannot be real answers to the query.
- Because all function symbols are in the heads of rules for "EDB" (global, conceptual) predicates, which have no other rules, we never introduce a function symbol within a function symbol, leading to a finite process.
- Thus, seminaive evaluation converges, and the set of *manc* facts without function symbols is the closest we can get to the true answer by using only the views.

Example of Inference

Suppose $v_1(a, b)$. Then we can infer:

- m(g(a,b),b) by r_5 .
- manc(g(a, b), b) by r_1 .
- f(a, g(a, b)) by r_4 .
- manc(a,b) by r_2 .

Formal Elimination of Function Symbols

If you feel uncomfortable with function symbols floating around, there is a systematic way to rewrite the rules so there are no function symbols at all.

- Create new versions of the rules by using any pattern with function symbols that appears in a head, and using that pattern in subgoals with which the pattern can be unified.
- Then, invent a new predicate for each pattern of arguments in each IDB predicate.
 - The new predicate represents where the function symbols are found.
 - But the predicate itself has only variables as arguments, no function symbols.

Example

Continue with the manc rules.

- Initially, r_4 and r_5 have heads with function symbols.
 - r_4 : f(., g(., .)) is the pattern for rule r_4 . Use it in r_2 to get:

 $r_7: manc(X,Y) := f(X,g(A,B)) \& manc(g(A,B),Y)$

 r_5 : The head of r_5 has pattern m(g(.,.),.), which unifies with the *m* subgoals in r_1 and r_3 :

 $r_8: manc(g(C,D),Y) := m(g(C,D),Y)$ $r_9: manc(g(C,D),Y) := m(g(C,D),Z) \&$ manc(Z,Y)

 Now, r₈ and r₉ have new heads with function symbols; the patterns are both manc(g(.,.),.).

- Thus we must use manc(g(.,.),.) in r_2, r_3, r_7 , and r_9 .
 - Rules r_2 and r_7 yield nothing new.
 - r_3 and r_9 yield, respectively:

```
r<sub>10</sub>: manc(X,Y) :- m(X,g(E,F))

& manc(g(E,F),Y)

r<sub>11</sub>: manc(g(C,D),Y) :- m(g(C,D),g(E,F))

& manc(g(E,F),Y)
```

Cleaning Up the Rules

To get a program that computes the maximum answer from the views, we can:

- 1. Replace atoms with function symbols by equivalent, new predicates that have variables as arguments.
- 2. Substitute for the "EDB" (global) predicates in terms of the views, but only where no function symbols are introduced into the rules.
 - ✤ Justified because the views themselves have no data with function symbols, and other predicates have already had all possible forms with function symbols covered by other rules.

Example (Continued)

- Use manc1(X, Y, Z) for manc(g(X, Y), Z).
 - No other variants of manc are needed in this simple example.
- r_1 : Only r_6 can be used for the *m* subgoal of r_1 (r_5 would introduce function symbols in the head, and we already generated r_8 , an appropriate variant of r_1 where the *m* subgoal has been unified with the pattern of the head of r_5).

 $r_1: manc(X,Y) := v_2(X,Y)$

- r_2 : No suitable replacement for the f subgoal exists.
- r_3 : As for r_1 , it is necessary only to use r_6 , yielding:

 $r_3: manc(X,Y) := v_2(X,Z) \& manc(Z,Y)$

 r_4 - r_6 : These inversion rules will be eliminated.

 r_7 : We must:

- a) Use r_4 for the f subgoal, which requires that A and X be unified because of the form of the head of r_4 .
- b) Use manc1 in place of manc in the second subgoal.

 $r_7: manc(X,Y) := v_1(X,B) \& manc1(X,B,Y)$

 r_8 : Use r_5 for the *m* subgoal; unification of *D* and *Y* is necessary.

 $r_8: manc1(C, Y, Y) := v_1(C, Y)$

 r_9 : Similar to r_8 , but D unified with Z.

 r_9 : manc1(C,Z,Y) :- v_1 (C,Z) & manc(Z,Y)

- r_{10} : Neither r_5 nor r_6 allows unification with the m subgoal of r_{11} without introducing function symbols, so this rule cannot be used.
- r_{11} : Same problem as r_{10} .

Summary of Rules

 $\begin{array}{l} r_1: \max(X,Y) := v_2(X,Y) \\ r_3: \max(X,Y) := v_2(X,Z) \& \max(Z,Y) \\ r_7: \max(X,Y) := v_1(X,B) \& \max(X,B,Y) \\ r_8: \max(C,Y,Y) := v_1(C,Y) \\ r_9: \max(C,Z,Y) := v_1(C,Z) \& \max(Z,Y) \end{array}$

• If we get rid of manc1 by expanding its subgoal in r_7 in both possible ways, we get:

```
manc(X,Y) :- v_2(X,Y)
manc(X,Y) :- v_2(X,Z) & manc(Z,Y)
manc(X,Y) :- v_1(X,B) & manc(B,Y)
manc(X,Y) :- v_1(X,Y)
```

- That's beginning to make sense; it says that we can concatenate either of the views in any possible way, since each represents a chain ending in a female.
- But note that it doesn't get all maternal ancestors, e.g., my Father's Father's Mother.