
Getting All You Can Out of Views

� The situation is that we are given a collection
of views and a query (possibly recursive).

✦ We want to �nd all the answers to the
query that we can using the views.

� This technology, due to Oliver Duschka, comes
from \Infomaster," a project of Prof. Mike
Genesereth.

Example

We have a parent EDB relation, with ancestors
de�ned in the usual way:

anc(X,Y) :- par(X,Y)

anc(X,Y) :- par(X,Z) & anc(Z,Y)

but the only view we have tells about
grandparents:

v1(X,Y) :- par(X,Z) & par(Z,Y)

If we want the most ancestor facts that we can
obtain from the view v1 (not using the EDB, which
is only abstract in applications like IM), then we
should use the program:

anc(X,Y) :- v1(X,Y)

anc(X,Y) :- v1(X,Z) & anc(Z,Y)

which gives us the even-distance ancestors that can
be composed of facts in v1, and nothing else.

Key Idea: Skolemization

1. Replace existential variables in the view
de�nitions by new function symbols applied
to the variables of the head.

✦ The function symbols so used are called
Skolem functions; it is a standard trick of
logic to get rid of existential variables.

2. Invert the view de�nitions, so they are EDB
predicates with function symbols de�ned in
terms of a view.

✦ Remember that the \EDB" predicates are
really global, abstract concepts as in IM,
not stored relations.

Example

To invert the view

v1(X,Y) :- par(X,Z) & par(Z,Y)

1



we get:

par(X,f(X,Y)) :- v1(X,Y)

par(f(X,Y),Y) :- v1(X,Y)

� Notice that :- is a misnomer as far as the
view de�nition is concerned, but in the inverse
rules it is simply an assertion that there are
no bogus facts in the view.

A More Complex Example

Suppose we have EDB predicates (global concepts)
f(X;Y ) and m(X;Y ), meaning that Y is the
father or mother, respectively, of X.

� Our query is to �nd all \maternal ancestors"
of an individual X, i.e., all females who are
ancestors:

r1: manc(X,Y) :- m(X,Y)

r2: manc(X,Y) :- f(X,Z) & manc(Z,Y)

r3: manc(X,Y) :- m(X,Z) & manc(Z,Y)

� The available views are:

v1(X,Y) :- f(X,Z) & m(Z,Y)

v2(X,Y) :- m(X,Y)

Invert the Views

r4: f(X,g(X,Y)) :- v1(X,Y)

r5: m(g(X,Y),Y) :- v1(X,Y)

r6: m(X,Y) :- v2(X,Y)

Evaluating the Rules

In a sense, that's all there is to it. Treat all
predicates except the views as IDB, and evaluate.

� Seminaive evaluation can produce tuples with
function symbols, but these cannot be real
answers to the query.

� Because all function symbols are in the heads
of rules for \EDB" (global, conceptual)
predicates, which have no other rules, we
never introduce a function symbol within a
function symbol, leading to a �nite process.

� Thus, seminaive evaluation converges, and the
set of manc facts without function symbols is
the closest we can get to the true answer by
using only the views.

2



Example of Inference

Suppose v1(a; b). Then we can infer:

� m(g(a; b); b) by r5.

� manc(g(a; b); b) by r1.

� f(a; g(a; b)) by r4.

� manc(a; b) by r2.

Formal Elimination of Function Symbols

If you feel uncomfortable with function symbols
oating around, there is a systematic way to
rewrite the rules so there are no function symbols
at all.

� Create new versions of the rules by using any
pattern with function symbols that appears
in a head, and using that pattern in subgoals
with which the pattern can be uni�ed.

� Then, invent a new predicate for each pattern
of arguments in each IDB predicate.

✦ The new predicate represents where the
function symbols are found.

✦ But the predicate itself has only variables
as arguments, no function symbols.

Example

Continue with the manc rules.

� Initially, r4 and r5 have heads with function
symbols.

r4: f(:; g(:; :)) is the pattern for rule r4. Use
it in r2 to get:

r7: manc(X,Y) :- f(X,g(A,B)) &

manc(g(A,B),Y)

r5: The head of r5 has pattern m(g(:; :); :),
which uni�es with the m subgoals in r1
and r3:

r8: manc(g(C,D),Y) :- m(g(C,D),Y)

r9: manc(g(C,D),Y) :- m(g(C,D),Z) &

manc(Z,Y)

� Now, r8 and r9 have new heads with function
symbols; the patterns are both manc(g(:; :); :).

3



� Thus we must use manc(g(:; :); :) in r2, r3, r7,
and r9.

✦ Rules r2 and r7 yield nothing new.

✦ r3 and r9 yield, respectively:

r10: manc(X,Y) :- m(X,g(E,F))

& manc(g(E,F),Y)

r11: manc(g(C,D),Y) :- m(g(C,D),g(E,F))

& manc(g(E,F),Y)

Cleaning Up the Rules

To get a program that computes the maximum
answer from the views, we can:

1. Replace atoms with function symbols by
equivalent, new predicates that have variables
as arguments.

2. Substitute for the \EDB" (global) predicates
in terms of the views, but only where no
function symbols are introduced into the rules.

✦ Justi�ed because the views themselves
have no data with function symbols,
and other predicates have already had
all possible forms with function symbols
covered by other rules.

Example (Continued)

� Use manc1(X;Y; Z) for manc(g(X;Y ); Z).

✦ No other variants of manc are needed in
this simple example.

r1: Only r6 can be used for the m subgoal of
r1 (r5 would introduce function symbols in
the head, and we already generated r8, an
appropriate variant of r1 where the m subgoal
has been uni�ed with the pattern of the head
of r5).

r1: manc(X,Y) :- v2(X,Y)

r2: No suitable replacement for the f subgoal
exists.

r3: As for r1, it is necessary only to use r6,
yielding:

r3: manc(X,Y) :- v2(X,Z) & manc(Z,Y)

r4{r6: These inversion rules will be eliminated.

r7: We must:

4



a) Use r4 for the f subgoal, which requires
that A and X be uni�ed because of the
form of the head of r4.

b) Use manc1 in place of manc in the
second subgoal.

r7: manc(X,Y) :- v1(X,B) & manc1(X,B,Y)

r8: Use r5 for the m subgoal; uni�cation of D and
Y is necessary.

r8: manc1(C,Y,Y) :- v1(C,Y)

r9: Similar to r8, but D uni�ed with Z.

r9: manc1(C,Z,Y) :- v1(C,Z) & manc(Z,Y)

r10: Neither r5 nor r6 allows uni�cation with the
m subgoal of r11 without introducing function
symbols, so this rule cannot be used.

r11: Same problem as r10.

Summary of Rules

r1: manc(X,Y) :- v2(X,Y)

r3: manc(X,Y) :- v2(X,Z) & manc(Z,Y)

r7: manc(X,Y) :- v1(X,B) & manc1(X,B,Y)

r8: manc1(C,Y,Y) :- v1(C,Y)

r9: manc1(C,Z,Y) :- v1(C,Z) & manc(Z,Y)

� If we get rid of manc1 by expanding its
subgoal in r7 in both possible ways, we get:

manc(X,Y) :- v2(X,Y)

manc(X,Y) :- v2(X,Z) & manc(Z,Y)

manc(X,Y) :- v1(X,B) & manc(B,Y)

manc(X,Y) :- v1(X,Y)

� That's beginning to make sense; it says that
we can concatenate either of the views in any
possible way, since each represents a chain
ending in a female.

� But note that it doesn't get all maternal
ancestors, e.g., my Father's Father's Mother.

5


