
Magic Sets

� Optimization technique for recursive Datalog.

� Also a win on some nonrecursive SQL
(Mumick, Finkelstein, Pirahesh, and
Ramakrishnan, 1990 SIGMOD, pp. 247{258).

� Combines bene�ts of both top-down
(backward chaining, recursive tree search)
and bottom-up (forward chaining, naive,
seminaive) processing of logic, without
disadvantages of either.

Example of Nonrecursive Use

Find the programmers who are making less than
the average salary for their department.

SELECT e1.name

FROM Emps e1

WHERE e1.job = 'programmer' AND

e1.sal < (

SELECT AVG(e2.sal)

FROM Emps e2

WHERE e2.dept = e1.dept

);

� Naive implementation computes the average
salary for all departments.

� \Magic-sets" implementation �rst determines
the departments that have programmers
(perhaps very few). It can then use an index
on Emps.dept to avoid accessing the entire
Emps relation.

Recursive Example

anc(X,Y) :- par(X,Y)

anc(X,Y) :- par(X,Z) & anc(Z,Y)

� Query: anc(0;W ).

� Top-down search (e.g., Prolog) would:

1. Query the EDB for par(0; Y ).

2. By the �rst rule: return all such answers,
say f(0; 1); (0; 2)g.

3. The same parent facts are also useful
in the second rule to set up \calls" to
anc(1; Y ) and anc(2; Y ).

4. Recursively solve these queries.

1



Advantage of Top-Down

� We never even ask about individuals that are
not in the ancestry of individual 0.

Advantage of Bottom-Up

(i.e., naive, seminaive)

� We don't go into in�nite recursive loops.

Example

Both of the following Datalog programs loop if
evaluated top-down:

anc(X,Y) :- par(X,Y)

anc(X,Y) :- anc(X,Z) & par(Z,Y)

anc(X,Y) :- par(X,Y)

anc(X,Y) :- anc(X,Z) & anc(Z,Y)

Key Magic-Sets Ideas

1. Introduce \magic predicates" to represent the
bound arguments in queries that a top-down
search would ask.

2. Introduce \supplementary predicates" to
represent how answers are passed from left-
to-right through a rule.

3. Technical details to get right:

a) Predicate splitting : an IDB predicate
must be \called" (in top-down search)
with only one binding pattern.

b) Subgoal recti�cation: avoid IDB subgoals
with repeated variables.

Rule/Goal Graphs

� Needed to assure unique binding patterns for
IDB predicates.

� Composed of rule and goal nodes, as follows.

Goal Nodes

� Predicate + \adornment."

� Adornment = list of b's and f 's, indicating
which arguments are bound, which are free.

� Example: pbfb. First and third arguments of p
are bound.

2



Rule Nodes

� r
[SjT ]
i represents the point in rule r after
seeing i subgoals, with variables in set S
bound, those in T free.

Children of Goal Nodes

Children of goal node p� are those rule nodes

r
[SjT ]
0 such that

1. Rule r has head predicate p.

2. S is the set of variables that appear in those
arguments of the head that � says are bound.

3. T is the other variables of r.

Children of Rule Nodes

Children of the rule node r
[SjT ]
j are:

1. The goal node of the (j + 1)st subgoal of r,
with adornment that binds those arguments
whose only variables are in S.

2. The rule node r
[S0jT 0]
j+1 , where S0 = S +

variables appearing the in (j + 1)st subgoal;
T 0 is the other variables.

� Exceptions: no rj+1 rule node if r has only
j + 1 subgoals. No goal child if j = 0 and r

has no subgoals.

Constructing the RGG

� Start with goal node whose adornment
matches bindings of query.

� Add nodes by constructing children as
required by rules from previous slides.

� Reordering of subgoals of a rule is allowed:
helps maximize \bound" arguments.

� Reordering may be di�erent for di�erent rule
nodes.

Example

Here is a nonrecursive example, where the RGG is
a tree.

r1: p(X,Y) :- q(X,Z) & r(Z,Y)

r2: r(A,B) :- s(A,B)

r3: r(A,B) :- t(A,B)

3



� Query form pbf , e.g., p(0;W )?

pbf

r
[XjY;Z]
1:0

qbf r
[X;ZjY ]
1:1

rbf

r
[AjB]
2:0 r

[AjB]
3:0

sbf tbf

Recursive Example

r1: anc(X,Y) :- par(X,Y)

r2: anc(X,Y) :- anc(X,Z) & anc(Z,Y)

� Query; ancbb, e.g., anc(joe; sue)?

ancbb

r
[XY j]
1:0 r

[X;Y jZ]
2:0

parbb ancbf r
[X;Y;Zj]
2:1

r
[XjY;Z]
2:0r

XjY ]
1:0

parbf r
[X;ZjY ]
2:1

Splitting Predicates

� For magic-sets to work, there must be a
unique binding pattern associated with each
IDB predicate.

� No constraint on EDB predicates.

� Key idea: For each adornment � such that p�

appears in the RGG, make a new predicate

4



p �. Rules for p � are the same as for p, but
predicates of IDB subgoals are the version
with the correct binding pattern.

� RGG helps us �gure out the needed binding
patterns.

Example

For RGG above:

anc bb(X,Y) :- par(X,Y)

anc bb(X,Y) :- anc bf(X,Z) &

anc bb(Z,Y)

anc bf(X,Y) :- par(X,Y)

anc bf(X,Y) :- anc bf(X,Z) &

anc bf(Z,Y)

Rectifying Subgoals

� All IDB subgoals must have arguments that
are distinct variables.

� Feasible for datalog (no function symbols).

� Fixes some problems where RGG knows about
fewer bound arguments than the top-down
expansion does.

✦ See p. 801� of PDKS-II.

� Trick: replace an IDB subgoal G with
variables appearing in more than one
argument and/or constant arguments by a
new predicate whose arguments are single
copies of the variables appearing in G.

� Create rules for the new predicate by unifying
G with heads of rules for G's predicate.

� Repetition may be needed because the
resulting rules may have unrecti�ed subgoals.

Example

r1: p(X,Y) :- a(X,Y)

r2: p(X,Y) :- b(X,Z) & p(Z,Z) & b(Z,Y)

� p(Z;Z) is unrecti�ed. Create q(Z) = p(Z;Z).

� Unify heads of rules with p(Z;Z). Careful! Z
in body of r2 must be renamed.

� r1 becomes p(Z,Z) :- a(Z,Z) or

q(Z) :- a(Z,Z)

5



� r2 becomes

p(Z,Z) :- b(Z,W) & p(W,W) & b(W,Z)

or q(Z) :- b(Z,W) & q(W) & b(W,Z)

� Finally, in the original r2 we replace subgoal
p(Z;Z) by q(Z). The resulting rules, with
variables renamed:

p(X,Y) :- a(X,Y)

p(X,Y) :- b(X,Z) & q(Z) & b(Z,Y)

q(X) :- a(X,X)

q(X) :- b(X,Y) & q(Y) & b(Y,X)

Magic Sets Transformation

Start with a program and a binding pattern for a
query.

1. Split predicates to get unique binding
patterns.

2. Rectify subgoals.

3. Introduce magic and supplementary predicates
as follows.

Magic Predicates

For each IDB predicate p, introduce m p.

� Arguments of m p correspond to bound
arguments of p in its unique binding pattern.

� Intuition: m p is true of exactly those tuples
that are members of queries to some p-node in
the top-down expansion.

Supplementary Predicates

For each rule r of n subgoals, introduce
supplementary predicates supr:j for 0 � j < n.

� Arguments are the bound and active variables
before the j + 1st subgoal of r.

✦ A variable is active i� it appears either in
the head or a subgoal from j + 1 on.

� Intuition: true for a tuple i� that tuple
represents a possible binding for the bound,
active variables at that point.

6


