Five Groups of Rules for Magic Construction

Let r be a typical rule

$$H := G_1 \And G_2 \And \cdots \And G_r$$

Group I

Supplementary \Rightarrow magic for next subgoal. If G_i has IDB predicate p:

 $m_p(\text{bound args of } G_i) := sup_{r,i-1}(\text{variables})$

Group II

Magic \Rightarrow 0th supplementary. If head has predicate q:

 $sup_{r.0}$ (variables) :- m_q (bound args)

Group III

i - 1st supplementary $+ G_i \Rightarrow i$ th supplementary.

 $sup_{r,i}(variables) := sup_{r,i-1}(variables) \& G_i$

Group IV

Last supplementary + last subgoal \Rightarrow head.

 $H := sup_{r.n-1}(variables) \& G_n$

Group V

Initialize. If query has predicate p we have the bodyless rule

 $m_p(\text{bound args from query})$

• Group V is the only rule that depends on the actual query. Others depend only on the binding *pattern*.

Magic-Sets Beats Top-Down

- Claim: the "magic" rules implemented by seminaive evaluation only infers facts that any top-down implementation would infer.
 - I.e., magic-sets + seminaive has the advantages of both top-down and bottomup.
 - ♦ Well not exactly. Prolog uses a "tailrecursion elimination" technique that sometimes does in O(n) time what takes O(n²) by magic-sets.
 - The same trick has been used in deductive systems like LDL, Coral; it is described in Ch. 15 of PDKS-II.

Example

Binary trees constructed as terms.

- Leaves constructed by constant *leaf*.
- Interior nodes constructed by function symbol n. $n(T_1, T_2)$ is a tree with left subtree T_1 and right subtree T_2 .
- Predicate $sub(T_1, T_2)$ true when T_1 is a subtree of T_2 .
- Predicate $eq(T_1, T_2)$ true when T_1 and T_2 are identical trees.
- Rules:

```
r_1: eq(leaf, leaf)
r_2: eq(n(T1, T2), n(T3, T4)) :-
eq(T1, T3) & eq(T2, T4)
```

- r_3 : sub(T1,T2) :- eq(T1,T2) r_4 : sub(T1,n(T2,T3)) :- sub(T1,T2) r_5 : sub(T1,n(T2,T3)) :- sub(T1,T3)
- Query: sub(T,n(n(leaf,leaf),leaf)), i.e., find the subtrees of a specific tree. Adorned goal: sub^{fb}.

The Rule/Goal Graph

• Interesting fact: r_4 and r_5 are not safe. however, for the sub^{fb} binding pattern, all variables of the head either appear in the body *or* are present in a bound argument of the head.

• This notion of safety with respect to a binding pattern is appropriate when magic-sets is used.

The Magic Rules

```
Group I

m_eq(T3) :- sup<sub>2.0</sub>(T3,T4)

m_eq(T4) :- sup<sub>2.1</sub>(T1,T3,T4)

m_eq(T2) :- sup<sub>3.0</sub>(T2)

m_sub(T2) :- sup<sub>4.0</sub>(T2,T3)

m_sub(T3) :- sup<sub>5.0</sub>(T2,T3)

Group II

sup<sub>2.0</sub>(T3,T4) :- m_eq(n(T3,T4))

sup<sub>3.0</sub>(T2) :- m_sub(T2)

sup<sub>4.0</sub>(T2,T3) :- m_sub(n(T2,T3))

sup<sub>5.0</sub>(T2,T3) :- m_sub(n(T2,T3))

Group III
```

```
sup<sub>2.1</sub>(T1,T3,T4) :-
sup<sub>2.0</sub>(T3,T4) & eq(T1,T3)
```

```
Group IV
```

```
eq(leaf,leaf)
eq(n(T1,T2),n(T3,T4)):-
sup<sub>2.1</sub>(T1,T3,T4) & eq(T2,T4)
sub(T1,T2):-sup<sub>3.0</sub>(T2) & eq(T1,T2)
sub(T1,n(T2,T3)):-
sup<sub>4.0</sub>(T2,T3) & sub(T1,T2)
sub(T1,n(T2,T3)):-
sup<sub>5.0</sub>(T2,T3) & sub(T1,T3)
Group V
```

Simplifying Magic Rules

• Use Group II rules to replace $sup_{r,0}$'s by magic predicates.

m_sub(n(n(leaf,leaf),leaf))

- If a supplementary predicate comes before an EDB subgoal, it is used only once and may be eliminated.
- However, if it is before an IDB subgoal, it is used twice, once in Group I and once in Group III or IV.

- Thus, we can omit $sup_{r,i}$ if (i + 1)st subgoal is EDB and i > 0.
- We use in place of Group III rules new rules of the form:

 $sup_{r,j}(\cdots)$:-

$$sup_{r,i-1}(\cdots)$$
 & G_i & \cdots & G_{j-1}

provided all of G_{i+1}, \ldots, G_{j-1} are EDB. Also, G_j is IDB, and either G_i is IDB or i = 1.

• Similarly, Group IV rules are replaced by

 $H := \sup_{r:i=1} (\cdots) \& G_i \& \cdots \& G_n$

provided all of G_{i+1}, \ldots, G_n are EDB. Also, G_i is IDB or i = 1.

• In the two rules above, use the appropriate magic predicate if i = 1.

Example

For the tree rules, we get:

Group I

```
m_eq(T3) :- m_eq(n(T3,T4))
m_eq(T4) :- sup<sub>2.1</sub>(T1,T3,T4)
m_eq(T2) :- m_sub(T2)
m_sub(T2) :- m_sub(n(T2,T3))
m_sub(T3) :- m_sub(n(T2,T3))
Group III
```

sup_{2.1}(T1,T3,T4) :m_eq(n(T3,T4)) & eq(T1,T3)

Group IV

m_sub(n(n(leaf,leaf),leaf))