
Hypergraphs

Hypergraph = nodes plus (hyper)edges that are
sets of any number of nodes.

� Applications include optimizing queries
that are joins and representing \universal
relations" (a useful data-modeling concept).

� Typically, nodes represent attributes and
hyperedges are sets of attributes.

Example

Suppose we have relations with schemas ABC,
ACD, and BE. This database schema could be
represented by the hypergraph

A B

C

E

D

Acyclic Hypergraphs

These have some useful properties that make
query optimization easier than the general case.
Most \natural" queries correspond to acyclic
hypergraphs.

De�nition depends on GYO reduction; GYO =
Graham-Yu-Ozsoyoglu.

� An ear is a hyperedge H such that we can
divide its nodes into two groups: those that
appear in H and no other hyperedge and
those that are contained in another hyperedge
G.

✦ Note that an isolated edge is an ear; no G
is needed.

� GYO reduction of a hypergraph is the process
of repeatedly �nding ears and removing them.
That is, we remove those nodes that are in the
ear and no other hyperedge; then we remove
the hyperedge itself, leaving the other nodes.

✦ We say that ear H is consumed by G, if
all the nodes that are not unique to H
are in G.

✦ If a hypergraph is reduced to nothing

1



by GYO reduction, then it is said to be
acyclic.

✦ Aside: \acyclic" makes sense: if the
hypergraph is an ordinary graph, it is
acyclic i� it is a tree.

Example

Here is an acyclic hypergraph

A

B C

E

F

D

� The central hyperedge DEF can consume
each of the other three hyperedges.

� At that time, the remaining hyperedge is
trivially an ear, since all of its nodes are
unique to it.

Formal GYO Reduction

The original de�nition of GYO reduction consisted
of the following two steps:

1. Eliminate a node that is in only one
hyperedge.

2. Delete a hyperedge that is contained in
another.

The goal is to reduce a hypergraph to a single,
empty hyperedge.

� You need to look at GYO reduction this way
to show that there is a unique GYO reduction
of any hypergraph, acyclic or not.

✦ Key idea of proof: candidates for step (1)
remain candidates, no matter what other
steps are taken.

Dangling Tuple Elimination

� Useful as a �rst step in optimizing large joins.

2



� A collection of relations R1; R2; : : : ; Rn is
locally join consistent if for each i and j there
are no tuples that dangle between Ri and Rj.
Formally: �Ri

(Ri ./ Rj) = Ri, and similarly
when i and j are reversed.

� These relations are globally join consistent if
there are no dangling tuples when considered
as a group. Formally, for all i:

�Ri
(R1 ./ R2 ./ � � � ./ Rn) = Ri

� Easy to check global consistency implies local
consistently.

✦ What about the opposite?

Theorem

If the relation schemas R1; R2; : : : ; Rn form an
acyclic hypergraph, then whenever relations for
these schemas are locally consistent, they are
globally consistent.

Proof

Induction on n, the number of hyperedges
(relations in the join).

Basis: For n = 1 there is nothing to check.

Induction: Assume for n � 1 hyperedges, and
prove for n.

� Let E be the �rst ear in a GYO reduction,
and let G be the remaining hypergraph.

� Since G has local consistency and n � 1
hyperedges, by the inductive hypothesis, G
is globally consistent.

✦ That is, every tuple of every relation of G
appears in the result of the join.

� E was consumed by some hyperedge H, and E
is locally consistent with H. Therefore, each
tuple t of E joins with some tuple s of H.

� s appears as part of some tuple r in the join
of the relations in G. Since attributes of E are
either unique to it, or in H, t joins with r.

✦ Thus, t particpates in the join of all n
relations.

� However, if the hypergraph is not acyclic,
we can always �nd relations that are locally
consistent but not globally consistent.

3



Example

Consider AB = f00; 11g, BC = f00; 11g, and
AC = f01; 10g.

� Any two relations are join-consistent. E.g.,
AB ./ AC = f001; 110g, which projected onto
AB is f00; 11g.

� But AB ./ BC ./ AC = ;, so the relations are
not globally consistent.

Reduction by Semijoins

If we are to take the join of several relations, it is
often e�cient to �rst remove the dangling tuples.

� It guarantees that whatever order we join in,
the result never shrinks. Thus, the total work
is proportional to the output, and we can't do
more than a constant factor better than that.

� To reduce relations to globally consistent
subsets, we can use the semijoin operation:

R := R>< S = �R(R ./ S) = R ./
�
�R(S)

�

� Sometimes, semijoins don't help eliminating
dangling tuples.

✦ For example, AB, BC, and AC above are
not changed by any semijoin.

� However, if the hypergraph is acyclic, the
following algorithm produces a full reducer

for a set of relations.

✦ That is, the result is a set of globally join-
consistent relations.

1. Pick an ear E that can be consumed
by hyperedge H. Execute the semijoin
H := H >< E.

2. Recursively generate a full reducer for the
hypergraph with E removed.

3. Append the semijoin E := E >< H.

Example

Consider the relation schemas ABC, ACD, and
DE.

� ACD is an ear that is consumed by ABC.

� In the resulting hypergraph, ABC can be
consumed by BE.

� The full reducer:

4



ABC := ABC >< ACD

BE := BE >< ABC

ABC := ABC >< BE

ACD := ACD>< ABC

Proof It Works

� After step (1), it is impossible for the join of
the remaining hyperedges to have a tuple that
doesn't join with any tuple of E.

� Inductively, step (2) leaves the relations other
than E in a globally join-consistent state.

� Then, step (3) eliminates from E any tuples
that do not join with the other relations.

5


