
1

Join Sizes

Sometimes, the size of a join result can be
exponential in the size of the input relations, even if
the join is acyclic.

Example 1

Consider A1A2 ./ A2A3 ./ � � � ./ An�1An.

� Let each Ai have domain f1; 2; 3; 4g.

� Let each relation consist of the eight tuples such
that one component is odd, the other even.

� Then the join result consists of all tuples over
A1A2 � � �An with alternating odd and even
components, a total of 2n+1 tuples.

� Yet the sum of the sizes of the n� 1 input
relations is only 8(n� 1).

Complexity of Acyclic Joins

� The appropriate measure of \input" to the
problem of computing a join is the sum of the
sizes of the input relations and the result.

� Desirable: algorithm that is polynomial in this
\size."

� If the join is acyclic, we can always compute
the join in polynomial time.

{ Start with a full reducer, which is
polynomial in the sizes of the input
relations.

{ Then, join in any order.

{ Since there are no globally dangling
tuples, the join can only increase in size at
each step, so each intermediate result is
polynomial in the size of the output.

Complexity of Cyclic Joins

The bad news is that the computation of an acyclic
join can be exponential in the sum of the input and
output sizes.

Example 2

Consider the attributes and relations of Example 1,
but include an additional relation AnA1 in the join,
as:

A1A2 ./ A2A3 ./ � � � ./ An�1An ./ AnA1

2

� This join is clearly cyclic.

� If n is odd, its result is empty, because the join
of the �rst n� 1 relations allows only sequences
of odd (o) and even (e) numbers of the forms
oeoe � � �oeo and eoeo � � � eoe, while the last term
AnA1 requires An and A1 to have values of
di�erent parity.

� The full reduction doesn't change the relations,
because every attribute of every relation has
f1; 2; 3; 4g in its column.

� No matter how we group the relations for a
join, before the �nal join there will be a relation
formed from at least (n + 1)=2 of the given
relations.

� This intermediate relation has at least 2(n+5)=2

tuples, so it surely takes time exponential in n
to compute.

Computing the Projection of a Join

Things only get worse when what we want is not the
join of relations, but some projection of that join,
e.g., �ACE(AB ./ BCD ./ DE).

� This form appears commonly in queries, but
there is usually enough selection applied to the
relations before joining that there is an e�cient
query plan.

� Not so, when the \query" is really the
de�nition of a materialized view. Then the
joined relations are often entire base tables, and
the exponentiality of the problem is real.

Projections of Acyclic Joins:
Yannakakis' Algorithm

The key idea is to use the \parse tree" implicit in a
GYO reduction to guide the order of joins.

� First step is to fully reduce the input relations.

� During the join phase, project out all
unnecssary attributes (those not in the �nal
projection and not needed in any future join)
after each join step.

� Intermediate relations are no larger than the
product of the input and output sizes.

3

Example 3

Consider the acyclic join-projection:

�AG(ABC ./ BF ./ BCD ./ CDE ./ DEG)

Here is its acyclic hypergraph:

A B

F

C D

E G

Parse Trees

When we perform a GYO reduction, we may
construct a parse tree as follows:

� Tree nodes correspond to hyperedges.

� The children of tree node H are all those
hyperedges consumed by H.

� We choose as a join order one in which each
node is joined with its parent, in some bottom
up order (i.e., do not join a node into its parent,
until all its children have been joined into it).

� After each join into a relation R, project the
result onto the set of attributes that are either
in the schema of R or on the projection list.

Example 4

Here is one possible parse tree for the join
hypergraph of Example 3:

CDE

BCD DEG

ABC BF

Here are example relation instances, which are
already fully reduced:

4

c1 e1
c1 e1d2

d1

d1
d1
d2

e1
e1
e1

g1
g2
g1

b1
b1

c1
c1

d1
d2

a1
a2

b1
b1

c1
c1

b1
b1

f 1
f 2

C D E

GD EB C D

A B C B F

We may join in any bottom-up order. Suppose we
�rst join BF into BCD. We get a relation with 4
tuples. However, F is not in the projection list
(A;G), so we project this relation onto BCD again,
leaving the same relation for BCD. The result is
that BF has been eliminated, with no other changes.

c1 e1
c1 e1d2

d1

d1
d1
d2

e1
e1
e1

g1
g2
g1

b1
b1

c1
c1

d1
d2

a1
a2

b1
b1

c1
c1

C D E

GD EB C D

A B C

We next choose to join ABC into BCD. Since A
appears in the projection list, it is retained at the
node for BCD, which now has schema ABCD, as:

c1 e1
c1 e1d2

d1

d1
d1
d2

e1
e1
e1

g1
g2
g1

b1
b1

c1
c1

d1
d2

a1
a1
a2
a2

b1
b1

c1
c1

d1
d2

C D E

GD EB C DA

Suppose we next join ABCD into CDE. We must
project out B, since it is neither an attribute of CDE
nor on the project list. However, A remains because
it is on the project list:

5

d1
d1
d2

e1
e1
e1

g1
g2
g1

c1 e1
c1 e1d2

d1

c1 e1
c1 e1d2

d1a1

a2

a1
a2

GD E

C D EA

Last, we join DEG into ACDE. Attribute G
remains, because it is in the project list:

a2

a2

a1

a1 c1 e1
c1 e1d2

d1

c1 e1
c1 e1d2

d1

a1 c1 d1 e1

a2 c1 d1 e1

g1

g1
g1

g1

g2

g2

C D EA G

Our �nal step is to project the resulting relation
ACDEG onto AG, which gives a �nal result
consisting of the four tuples fa1g1; a1g2; a2g1; a2g2g.

Why Yannakakis' Algorithm is
Polynomial

Consider a relation R at some node, which at some
time during the algorithm has been replaced by

�R[Y (R ./ S1 ./ S2 ./ � � � ./ Sk)

where:

1. S1; : : : ; Sk are some of the relations descending
from R in the parse tree.

2. Y is the set attributes on the project list that
are not in R but in at least one of S1; : : : ; Sk.

** Tricky point: No attribute other than R and
output attributes ever need to be in the schema
of R. The proof depends on a number of ideas
we haven't had:

{ Before there was GYO reduction, the
full-reducer theorem was proven using a
di�erent de�nition of acyclicity. A
hypergraph was said to be acylic if its
hyperedges could be mapped to nodes,
and the nodes placed in a parse tree, so
that for each attribute A, the nodes with
A in their schema formed a subtree (not
necessarily at the root).

6

{ One can prove that this de�nition of
\acyclic" is equivalent to the GYO-based
de�nition we use today.

{ Thus, if A is an attribute at a child of R,
but not at R, A cannot appear at any
ancestor of R and is thus not needed after
we join that child with R.

In what follows, we count the \size" of a relation
instance as the number of its tuples. Technically, we
need to consider the number of components of tuples
as well, but since the set of relations and their
schemas may be considered �xed, we are ignoring
constant factors only.

� Let T = R ./ S1 ./ S2 ./ � � � ./ Sk.

� Then �R[Y (T) � �R(T)� �Y (T). To see why,
notice that R and Y are disjoint sets of
attributes. (As always, we're using R as both
an instance and a schema, where appropriate.)

� Because the relations are fully reduced, joins
only increase in size, and no tuple in an
intermediate join can be dangling. Thus:

1. �Y (T) is no larger than �L(T), where L is
the entire project list for the query.

2. �L(T) is no larger than the output, since
every tuple of T extends to at least one
tuple in the join of all relations.

3. Putting (1) and (2) together: �Y (T) is no
larger than the output!

� �R(T) = R (again, because the relations are
fully reduced), so �R(T) is surely no bigger
than the input.

� We conclude that �R[Y (T) is no bigger than
the product of the input and output, i.e.,
polynomial in the input + output sizes.

� Final step: the number of computations of
polynoimal-sized relations is a constant,
depending only on the schemas and not on the
instances.

