
PART I: LEXICAL ANALYSIS

� The �rst phase of compilation.

� Takes raw input, which is a stream of characters, and converts it into a stream of tokens, which are
logical units, each representing one or more characters that \belong together."

Typically,

1. Each keyword is a token, e.g, then, begin, integer.

2. Each identi�er is a token, e.g., a, zap.

3. Each constant is a token, e.g., 123, 123.45, 1.2E3.

4. Each sign is a token, e.g., (, <, <=, +.

Example:

if foo = bar then � � �

consists of tokens:

IF, <ID,1>, EQSIGN, <ID,2>, THEN � � �

Note that we have to distinguish among di�erent occurrences of the token ID.

� LA is usually called by the parser as a subroutine, each time a new token is needed.

Approaches to Building Lexical Analyzers

The lexical analyzer is the only phase that processes input character by character, so speed is critical.

Either

1. Write it yourself; control your own input bu�ering, or

2. Use a tool that takes speci�cations of tokens, often in the regular expression notation, and produces
for you a table-driven LA.

(1) can be 2{3 times faster than (2), but (2) requires far less e�ort and is easier to modify.

Hand-Written LA

Often composed of a cascade of two processes, connected by a bu�er:

1. Scanning: The raw input is processed in certain character-by-character ways, such as

a) Remove comments.
b) Replace strings of tabs, blanks, and newlines by single blanks.

2. Lexical Analysis: Group the stream of re�ned input characters into tokens.

Raw Re�ned LEXICAL Token

Input!SCANNER! Input !ANALYZER!Stream

1

The Token Output Stream

Before passing the tokens further on in the compiler chain, it is useful to represent tokens as pairs, consist-
ing of a

1. Token class (just \token" when there is no ambiguity), and a

2. Token value.

The reason is that the parser will normally use only the token class, while later phases of the compiler,
such as the code generator, will need more information, which is found in the token value.

Example:

Group all identi�ers into one token class, <identi�er>, and let the value associated with the identi�er be a
pointer to the symbol table entry for that identi�er.

(<identi�er>, <ptr to symbol table>)

Likewise, constants can be grouped into token class <constant>:

(<constant>, <ptr to value>)

Keywords should form token classes by themselves, since each plays a unique syntactic role. Value can be
null, since keywords play no role beyond the syntax analysis phase, e.g.:

(<then>, {)

Operators may form classes by themselves. Or, group operators with the same syntactic role and use the
token value to distinguish among them.

For example, + and (binary) � are usually operators with the same precedence, so we might have a token
class <additive operator>, and use value = 0 for + and value = 1 for �.

State-Oriented Lexical Analyzers

The typical LA has many states, or points in the code representing some knowledge about the part of the
token seen so far.

Even when scanning, there may be several states, e.g., \regular" and \inside a comment." However, the
token gathering phase is distinguished by very large numbers of states, perhaps several hundred.

Keywords in Symbol Table

To reduce the number of states, enter keywords into the symbol table as if they were identi�ers.

When the LA consults the symbol table to �nd the correct lexical value to return, it discovers that this
\identi�er" is really a keyword, and the symbol table entry has the proper token code to return.

2

Example:

A tiny LA has the tokens \+", \if", and <identi�er>. The states are suggested by:

plus
sign

+ delimiter
! 1 f 3 \if"

i

2 letters,
other digits identi�er

other letters, 4
letters digits delimiter

letter,
digit

delimiter

For example, state 1, the initial state, has code that checks for input character + or i, going to states
\plus sign" and 2, respectively.

On any other letter, state 1 goes to state 4, and any other character is an error, indicated by the absence
of any transition.

Table-Driven Lexical Analyzers

Represent decisions made by the lexical analyzer in a two-dimensional ACTION table. Row = state; col-
umn = current input seen by the lookahead pointer.

The LA itself is then a driver that records a state i, looks at the current input, X, and examines the array
ACTION[i;X] to see what to do next.

The entries in the table are actions to take, e.g.,

1. Advance input and go to state j.

2. Go to state j with no input advance. (Only needed if state transitions are \compressed" | see next
slide.)

3. The token \if" has been recognized and ends one position past the beginning-of-token marker. Ad-
vance the beginning-of-token marker to the position following the f and go to the start state. Wait
for a request for another token.

4. Error. Report what possible tokens were expected. Attempt to recover the error by moving the
beginning-of-token pointer to the next sign (e.g., +, <) or past the next blank. This change may
cause the parser to think there is a deletion error of one or more tokens, but the parser's error recov-
ery mechanism can handle such problems.

Example:

The following suggests the table for our simple state diagram above.

State i f + a

1 2* 4* A* 4*
2 4* 3* B 4*
3 4* 4* C 4*
4 4* 4* B 4*

3

Key:

* = Advance input
A = Recognize token \plus sign"
B = Recognize token \identi�er"
C = Recognize token \if"

� + stands for itself, and also represents a typical delimiter.

� a represents a typical \other letter or digit."

Compaction of the table is a possibility, since often, most of the entries for a state are the same.

Regular Expressions

� Useful notation for describing the token classes.

� ACTION tables can be generated from them directly, although the construction is somewhat compli-
cated: see the \Dragon book."

Operands:

1. Single characters, e.g, +, A.

2. Character classes, e.g.,

letter = [A-Za-z]

digit = [0-9]

addop = [+-]

� Expressions built from operands and operators denote sets of strings.

Operators

1. Concatenation. (R)(S) denotes the set of all strings formed by taking a string in the set denoted by
R and following it by a string in the set denoted by S. For example, the keyword \then" can be ex-
pressed as a regular expression by t h e n.

2. The operator + stands for union or \or." (R) + (S) denotes the set of strings that are in the set de-
noted by S union those in the set denoted by R. For example, letter+digit denotes any character that
is either a letter or a digit.

3. The post�x unary operator *, the Kleene closure, indicates \any number of," including zero. Thus,
(letter)* denotes the set of strings consisting of zero or more letters.

� The usual order of precedence is * highest, then concatenation, then +. Thus, a+ bc� is

a+ (b(c�))

Shorthands

4. R+ stands for \one or more occurrences of," i.e., R+ = RR�. Do not confuse in�x +, meaning \or,"
with the superscript +.

5. R? stands for \an optional R," i.e., R? = R + �.

� Note � stands for the empty string, which is the string of length 0.

4

Some Examples:

identi�er = letter (letter + digit)*
float = digit+ . digit* + . digit+

Finite Automata

� A collection of states and rules for transferring among states in response to inputs.

� They look like state diagrams, and they can be represented by ACTION tables.

We can convert any collection of regular expressions to a FA; the details are in the text. Intuitively, we
begin by writing the \or" of the regular expressions for each of our tokens.

Example:

In our simple example of plus signs, identi�ers, and \if," we would write:

+ + i f + letter (letter + digit)*

States correspond to sets of positions in this expression. For example,

� The \initial state" corresponds to the positions where we are ready to begin recognizing any token,
i.e., just before the +, just before the i, and just before the �rst letter.

� If we see i, we go to a state consisting of the positions where we are ready to see the f or the second
letter, or the digit, or we have completed the token.

Positions following the expression for one of the tokens are special; they indicate that the token has been
seen.

However, just because a token has been seen does not mean that the lexical analyzer is done. We could
see a longer instance of the same token (e.g., identi�er) or we could see a longer string that is an instance
of another token.

5

Example

The FA from the above RE is:

plus
sign

+

part of \if"
or identi�er

initial
i f

\if" or
other identi�er
letter other letter,

digit
identi�er

letter,
letter, digit
digit

� Double circles indicate states that are the end of a token.

Note the similarities and di�erences between this FA and the hand-designed state diagram introduced ear-
lier.

The structures are almost the same, but the FA does not show explicit transitions on \delimiters." In ef-
fect, the FA takes any character that does not extend a token as a \delimiter."

Using the Finite Automaton

To disambiguate situations where more than one candidate token exists:

1. Prefer longer strings to shorter. Thus, we do not take a or ab to be the token when confronted with
identi�er abc.

2. Let the designer of the lexical analyzer pick an order for the tokens. If the longest possible string
matches two or more tokens, pick the �rst in the order. Thus, we might list keyword tokens before
the token \identi�er," and confronted with string

i f + � � �

would determine that we had the keyword \if," not an identi�er if.

We use these rules in the following algorithm for simulating a FA.

1. Starting from the initial state, scan the input, determining the state after each character. Record the
state for each input position.

2. Eventually, we reach a point where there is no next state for the given character. Scan the states
backward, until the �rst time we come to a state that includes a token end.

3. If there is only one token end in that state, the lexical analyzer returns that token. If more than one,
return the token of highest priority.

6

Example:

The above FA, given input

i f a +

would enter the following sequence of states:

i f a +

initial part of \if" \if" or identi�er none
or identi�er identi�er

The last state representing a token end is after `a', so we correctly determine that the identi�er ifa has
been seen.

Example Where Backtracking is Necessary

In Pascal, when we see 1., we cannot tell whether 1 is the token (if part of [1..10]) or whether the token
is a real number (if part of 1.23).

Thus, when we see 1.., we must move the token-begin marker to the �rst dot.

PART II: INTRODUCTION TO PARSING

Parsing =

� Check input is well-formed.

� Build a parse tree or similar representation of input.

Recursive Descent Parsing

� A collection of recursive routines, each corresponding to one of the nonterminals of a grammar.

� Procedure A, corresponding to nonterminal A, scans the input and recognizes a string derived from
A. If recognized, the appropriate semantic actions are taken, e.g., a node in a parse tree correspond-
ing to A is created.

� In its most general form, recursive descent involves backtracking on the input.

LL-Parsing

� Specialization of recursive descent that requires no backtracking.

� Called LL, because we discover a leftmost derivation while scanning the input from left to right.

� A leftmost derivation is one where at each step, the leftmost nonterminal is replaced.

Example:

A) BC) DEC) aEC

Is leftmost;

A) BC) BFG

is not.

� A left-sentential form is any string of terminals and nonterminals derived by some leftmost derivation.

7

LL Parser Structure

� Input, a string of terminals, is scanned left-to-right.

� A stack holds the tail of the current LSF, which is the portion of the LSF from the leftmost nontermi-
nal to the right.

� The head of the LSF, or pre�x of terminals up to the �rst nonterminal, will always match the portion
of the input that has been scanned so far.

Parser Actions

1. Match the top-of-stack, which must be a terminal, with the current input symbol. Pop the stack, and
move the input pointer right.

2. Replace the top-of-stack, which must be a nonterminal A, by the right side of some production for A.

� The magic of LL parsing: knowing which production to use in (2).

Example:

Consider the following grammar for lists.

E = \element" (atom or bracketed list), the start symbol.

L = \list," one or more elements, separated by commas.

T = \tail," empty or comma-list.

E ! [L] j a
L ! ET

T ! ; L j �

Beginning of an LL parse for string [a; [a; a]] is:

Left S. F. Stack Remaining Input

E E [a; [a; a]]
[L] [L] [a; [a; a]]
[L] L] a; [a; a]]
[ET] ET] a; [a; a]]
[aT] aT] a; [a; a]]
[aT] T] ; [a; a]]
[a; L] ; L] ; [a; a]]

� Build parse tree by expanding nodes corresponding to the nonterminals exactly as the nonterminals
themselves are expanded.

FIRST

To de�ne \LL grammar" precisely, we need two de�nitions. The �rst is \FIRST".

If � is any string, FIRST(�) is the set of terminals b that can be the �rst symbol in some derivation
�$)� b�.

� Note that if �)� �, then b could be $, which is an \honorary" terminal.

8

FOLLOW

FOLLOW(A) is the set of terminals that can immediately follow nonterminal A in any derivation (not nec-
essarily leftmost) from S$, where S is the start symbol.

� Algorithms for computing FIRST and FOLLOW are found in the \Dragon book."

De�nition of LL Grammar

We must decide how to expand nonterminal A at the top of the stack, knowing only the next input sym-
bol, b (the \lookahead symbol"). Production A ! � is a choice if

1. b is in FIRST(�), or

2. �)� �, and b is in FOLLOW(A).

Otherwise, �, followed by whatever is below A on the stack, could not possibly derive a string beginning
with b.

� A grammar is LL(1) [or just \LL"] if and only if, for each A and b, there is at most one choice accord-
ing to (1) and (2) above.

� A table giving the choice for each nonterminal A (row) and lookahead symbol b (column) is an LL

parsing table.

Example:

The list grammar,

E ! [L] j a
L ! ET

T ! ; L j �

is LL. Here is the parsing table.

a [] ; $

E E ! a E ! [L]
L L! ET L! ET

T T ! � T !; L

For example, on lookahead \," we can only expand T by ; L. That production is a choice, because \," is in
FIRST(; L). The other production, T ! �, is not a choice, because \," is not in FOLLOW(T).

On the other hand, \]" is in FOLLOW(T), so T ! � is a choice on this lookahead.

� Note that on lookaheads a, $, and \[" there is no choice of expansion for T . Such a situation repre-
sents an error; the input cannot be derived from the start symbol.

9

Example of Non-LL Construct

Consider the following grammar fragment, which represents the \dangling else."

(1) <stat> ! if <cond> then

<stat> <else-clause>
(2) <else-clause> ! else <stat>
(3) <else-clause> ! �

How do we expand <else-clause> on lookahead else?

� Surely, else is in FIRST(else <stat>), so production (2) is a choice.

� However, (3) is also a choice, because else is in FOLLOW(<else-clause>), as seen by a parse tree of
the following form.

<stat>

if <cond> then <stat> <else-clause>

if<cond> then<stat><else-clause> else <stat>

�

� Normally, we pick (2), even though there is a technical LL violation. This choice corresponds to the
idea \an else matches the previous unmatched then."

Designing LL Grammars

There are several tricks that help us put grammars into an LL form.

1. Eliminating left-recursion.

2. Left-factoring.

Eliminating Left-Recursion

A grammar with left-recursion, a nontrivial derivation of the form A)� A�, cannot possibly be LL.

10

Example

Consider

A ! AB j c

A typical derivation from A looks like:

A

A B

A B

c

Seeing only lookahead c, we have no clue as to how many times we should apply A ! AB before apply-
ing A ! c.

The \Dragon book" gives a general algorithm for eliminating left-recursion. The following simple rule ap-
plies in most cases. Replace the productions

A ! A� j �

by

A ! �A0

A0 ! �A0 j �

The idea is that every leftmost derivation from A eventually uses A ! �, so in the new productions, � is
generated �rst, followed by zero or more occurrences of �. The new nonterminal A0 takes care of the �'s.

The implied transformation on parse trees is suggested by the following diagram; ��� is derived in each
case.

A A

A � � A0

A � � A0

� � A0

�

Before After

Example:

A more natural grammar for lists is

E ! [L] j a
L ! L;E j E

We may replace the left-recursion for L by

E ! [L] j a
L ! EL0

L0 ! ; EL0 j �

� Note that L0 plays the role of T in our earlier example. However, instead of L0 ! ; L, the L has been
expanded by its lone production.

11

Left-Factoring

Sometimes, two productions for a nonterminal have right sides with a common pre�x. For example, the
following is also a natural grammar for lists.

E ! [L] j a
L ! E;L j E

If L is at the top of stack, and we see a lookahead symbol, like a, that is in FIRST(E), then we cannot tell
whether to expand L by E;L or just E.

The trick is to \factor" the E out, and defer the decision until we have examined the portion of the input
E derives. New grammar:

E ! [L] j a
L ! EL0

L0 ! ; L j �

� This grammar is exactly our original, with L0 in place of T .

General Rule

Replace A ! �� and A ! � by

A ! �A0

A0 ! � j

12

