
Data Flow Analysis

We saw in the introduction how values used in one block of a ow graph could be used in other blocks.

Example

A[j] computed in one block by code

offset := 4*j;

value := base[offset]

If a later block also references A[j], we may be able to use value without recalculation, or if an assign-
ment to A[j] occurs, we may be able to use offset.

How do we know that value and offset can be used again? Could j have changed in the interrum?

Many kinds of information about global properties of programs can be gathered and used locally. These
are called data ow analysis problems.

Example

Above, the global property is that along any path from the �rst block to the second, the values of the ex-
pressions 4 � j and A[j] do not change.

A[j]

No changes to j, A[j]

:= A[j]

A[j] :=

The Constant Computation Problem

A simple example that we shall focus on is constant computations: is it true that a particular variable al-
ways has the same value whenever a particular point in the program is reached?

Example

Variable debug is set to 1 on entry to suspect code, set to 0 on leaving that code, and not changed other-
wise.

If we know the value of debug at compile time, either throughout the program or at a particular use, then
we can generate better code.

1

Finding Constant Computations

Suppose we have a use of a variable X in a statement like

A := X + B

One way to deduce that the value of X at this statement has a particular constant value is to consider all
paths from the start node to the node containing the statement A := X + B.

Suppose along every such path (of which there may be an in�nite number) there is at least one assignment
to X, the last of which is X := 7.

start

X := ???
X := 7

X := 7

A := X + B

On entry to the block containing A := X + B we can be sure that X has the value 7.

If X is not changed before use in the block, we can replace statement A := X + B by A := 7 + B, presumably
cheaper.

Incompleteness of DFA Rules

When performing DFA, we never get all potentially useful facts.

\Constant computations" was really an attempt to prove little theorems of the form:

\Every path from the start node to block B

has the property that � � �"

In our example, the property was that the last assignment to X along the path was X := 7.

� This property is su�cient to deduce that X has the value 7, but it is not necessary.

Example

There might be a path to block B with the code

read Y

Z := Y + 7

X := Z - Y

� This code also makes X = 7, yet our method would not discover that fact.

Example

There might be a path in the ow graph that led to block B but could not be taken in any real computa-
tion, e.g., because it had statements

C := D + 1

if C=D goto � � �

If this last path assigned X the value 8, we could not deduce by our method that any computation that
really led to block B gave X the value 7.

2

Safe and Unsafe Uses of Information

Since our methods provide only a subset of the true facts, we must be careful about how we use the infor-
mation provided by DFA.

If we can prove X = 7 at a point, then surely X is 7 there. However, just because we cannot deduce X = 7
by the DFA method chosen does not mean that X does not really have the value 7 every time the point is
reached.

It would be an error if we made some code improvement that depended for its correctness on the \fact"
that X was not always 7.

� We must use information in the safe direction (what's proved is true).

� Never use information in the unsafe direction (what's not proved is false).

Example

We can use DFA to check a program for uses of a variable X where there is a path in the ow graph to
that use along which X might not be de�ned.

It is tempting to say there must be an error, and refuse to run the program. However, the programmer
may know that that path is impossible, for reasons the compiler is not capable of deducing.

Example

A[i] := cannot be an assignment to A[j] if we can prove i 6= j at the point.

It is not su�cient to make an \honest e�ort" to prove i = j, and conclude i 6= j if we fail.

DFA Problem #1: Reaching De�nitions

The reaching de�nitions problem is to determine for each block B and each variable X, what statements of
the program could be the last de�nition of X along some path to the beginning of B.

A statement de�nes X if it may assign X a value. Typical de�nitions of X include

1. An assignment or read of X.

2. A call of a procedure that can access X, e.g., because X is in the scope of the procedure or the call
passes X as a parameter (but not by-value).

3. An indirect assignment *P := A, where P is a pointer variable that could point to X.

� Notice that a statement could de�ne more than one variable.

� De�nitions of type (1) are unambiguous; they surely de�ne the variable.

� Types (2) and (3) are examples of ambiguous; they may or may not assign a value to the variable.

� This formulation of \defs" ignores aliasing problems, where due to procedure linkages, two variables
that appear to be di�erent are actually the same.

Formally, de�nition d reaches point p if there is some path from the start node to p along which d occurs,
and subsequent to the last occurrence of d there are no other unambiguous de�nitions of X.

start

d: X := � � �
No unambiguous
defs of X

p

3

Example

d: X := A + B

*P := C

De�nition d still reaches the point below the pointer assignment.

Uses of Reaching De�nitions

� Many uses in algorithms for loop optimization.

Another example: constant computations. If we know all the places where a particular use of X could be
de�ned, then we can tell if all such places are statements of the form

X := the same constant

Getting RD's to the Interiors of Blocks

Reaching de�nitions are computed only for the beginnings of blocks, rather than for all statements, for
e�ciency reasons.

Knowing what de�nitions of X reach the beginning of block B, we can tell what de�nitions of X reach any
statement s of B by the following rules.

1. If no unambiguous defs of X occur in B before s, then the reaching de�nitions of X at s include those
that reach the beginning of B.

2. If s is preceded by one or more unambiguous defs of X within the block, then only the last of these
reaches s.

3. If there are ambiguous defs of X between the last unambiguous def and s, then these also reach s.

That is, in

d1 d2

d3: *P := 2

A := X + B

all three defs of X may reach the use of X.

Data Flow Equations

To reduce calculations about in�nite sets of paths to �nite ones, and for e�ciency in computing reaching
de�nitions, we create and solve a set of data ow equations.

The variables of these equations are called IN(B) and OUT(B); there is one pair for each block B.

The intent is that after solution of the equations:

IN(B) = the set of defs reaching
the beginning of B

OUT(B) = the set of defs reaching
the end of B

We group the equations we write into two classes:

1. Transfer Equations that relate OUT for the block to IN, and

2. Conuence Rules that tell what happens when paths come together.

4

Transfer Equations

If we know IN(B) we can compute OUT(B) looking only at what is in the block B. That is, there is some
function fB for which

OUT(B) = fB(IN(B))

We call this relationship the transfer equation for B.

� Di�erent DFA problems yield di�erent transfer equations.

For reaching de�nitions (and many other problems) fB has a simple form.

KILL Sets

Say def d kills def e if d and e de�ne the same variable, and d is unambiguous.

� Ambiguous defs cannot kill other defs.

KILL(B) is the set of defs not in B that are killed by some def in B.

GEN Sets

Block B generates def d if d is in B and is not followed in B by any unambiguous defs of the same vari-
able as d.

GEN(B) is the set of defs generated by B.

The transfer equation for B is:

OUT(B) = (IN(B)�KILL(B)) [GEN(B)

Conuence Rules

A def reaches the beginning of B if and only if it reaches the end of one of B's predecessors. That is:

IN(B) = [pred. P of B OUT(P)

5

Example

start

B1 d1: X :=

d2: Y :=

B2 d3: X := d4: Y := B3

B4 d5: X :=

GEN(B1) = fd1; d2g
GEN(B2) = fd3g
GEN(B3) = fd4g
GEN(B4) = fd5g

KILL(B1) = fd3; d4; d5g
KILL(B2) = fd1; d5g
KILL(B3) = fd2g
KILL(B4) = fd1; d3g

OUT(B1) = (IN(B1)� fd3; d4; d5g) [fd1; d2g
OUT(B2) = (IN(B2)� fd1; d5g) [fd3g
OUT(B3) = (IN(B3)� fd2g) [fd4g
OUT(B4) = (IN(B4)� fd1; d3g) [fd5g

IN(B1) = OUT(B4)
IN(B2) = OUT(B1)
IN(B3) = OUT(B1) [OUT(B4)
IN(B4) = OUT(B2) [OUT(B3)

Solving Data Flow Equations

We have 8 equations in 8 unknowns, so it looks like we can solve these equations by Gaussian elimination.

� Nonsense! Gaussian elimination works only when the values of the unknowns are taken from a �eld.

� As a result, the equations cannot be solved by Gaussian elimination or any of the \standard" meth-
ods.

In fact, the solution to the equations need not be unique. For example, we could add a spurious def d6 to
all IN's and OUT's, and get another valid solution. Fortunately:

� The DF equations have a least solution, in which the IN's and OUT's are subsets of their values in
any other solution.

� The least solution is exactly what we want: the set of defs that really reach the points in question
along some path.

6

The Iterative Solution to DF Equations

One simple way to produce the least solution is to

1. Start by assuming nothing reaches anywhere.

2. Repeatedly visit all the nodes, applying the conuence rules to get new IN's and applying the transfer
rules to get new OUT's.

for each block B do

OUT(B) := GEN(B);

while changes to any OUT occur do

for each block B do begin

IN(B) :=

[pred. P of B OUT(P);

OUT(B) :=

(IN(B)� KILL(B))

[GEN(B)

end

� Note that IN and OUT sets never decrease when recomputed in the while-loop.

Example

start

B1 d1: X :=

d2: Y :=

B2 d3: X := d4: Y := B3

B4 d5: X :=

Initial Round 1 Round 2

IN(B1) ; fd5g fd2; d4; d5g
OUT(B1) fd1; d2g fd1; d2g fd1; d2g

IN(B2) ; fd1; d2g fd1; d2g
OUT(B2) fd3g fd2; d3g fd2; d3g

IN(B3) ; fd1; d2; d5g fd1; d2; d4; d5g
OUT(B3) fd4g fd1; d4; d5g fd1; d4; d5g

IN(B4) ; fallg fallg
OUT(B4) fd5g fd2; d4; d5g fd2; d4; d5g

There are no more changes to the OUT's (although changes to IN's occurred on the second round). No
further iterations are necessary, and the rightmost column gives the minimal solution.

7

Data Structures For Reaching De�nitions

The sets of de�nitions IN, OUT, GEN, and KILL can require signi�cant space.

� These sets tend to be dense, so a bit-vector representation is called for.

We must create a table that associates each def with an integer i. The entry for i is either a statement
number (for an unambiguous def) or a statement number and variable (for an ambiguous def).

� Simplify by omitting defs of local variables.

� Another space-saving trick: Combine all ambiguous defs of A into one. Rationale is that when any
ambiguous def of A reaches a point, there isn't much we can say anyway.

Now, we can represent sets IN, etc., by bit vectors, in which the ith position has 1 if def i is in the set,
and 0 if not.

� We can also speed up the DF equations this way. Union is bitwise logical OR; set di�erence is NOT-
AND.

Available Expressions

It is possible to make use of an expression in one block that was computed in another block.

Consider:

start

X := A + B Y := A + B

No defs of
A or B

p: Z := A + B

Every path from the start node to a point p contains an evaluation of the expression A + B, and after the
last calculation of A+ B along any such path there is no subsequent def (even ambiguous) of A or B.

� Note: In what follows, we shall often use + as a generic operator.

The expression A + B is said to be available at p. If p uses that expression, then it need not be recalcu-
lated at p.

Rather, we can introduce a new variable T to hold A+ B, and T can be used in place of A+ B at p.

start

T := A + B T := A + B

X := T Y := T

p: Z := T

We shall later discuss \copy propagation," whereby the \copy" statements X := T and Y := T can often be
eliminated.

� In the worst case, where no copy steps can be avoided, we have increased the code size, although the
speed of the code has probably improved.

� Not all occurrences of A + B may require this treatment; we'll discuss the algorithm for global com-
mon subexpression elimination later.

8

Computing Available Expressions

� Similar (but not identical) to RD's.

� We again use variables IN(B) and OUT(B) for each block B.

� The values for variables are subsets of the set of all expressions (that is, right sides of 3-addr state-
ments) computed by the program.

� The intent is that IN(B) is the set of expressions available at the beginning of B and OUT(B) is the
set of expressions available at the end of B.

KILL Sets

KILL(B) = the set of expressions X + Y such that there is a de�nition of X or Y in B.

� Note this def could be ambiguous, e.g., a pointer assignment.

� If there are potential aliases due to parameter passing, the def could even be of an alias of X or Y.

GEN Sets

GEN(B) = the set of expressions X + Y computed in B at a position where neither X nor Y are de�ned
subsequently (including ambiguous defs).

� Unlike RD's these GEN and KILL are not necessarily disjoint, but there is an obvious �xup.

Example

A block consisting of

A := B + C

X := Y - Z

B := X + Y

X := A * B

� Kills expressions like A �B and X +Q (although A �B is also generated).

� Generates Y � Z and A �B.

� B + C is not generated, since C is subsequently de�ned. Neither is X + Y generated, since X is later
de�ned (in fact, X is de�ned by the assignment portion of the same statement that evaluates X + Y).

Transfer Equations

As for RD's we can reason that an expression is available at the end of a block if either it is available at
the beginning and not killed, or it is generated (regardless of whether it is killed or not). That is:

OUT(B) = (IN(B) � KILL(B)) [GEN(B)

Conuence Equations

For AE's, the appropriate conuence operator is intersection, rather than union.

IN(B) = \pred. P of B OUT(P)

� As a special case, we know that nothing is available at the start node. Thus, we insist that IN(start)
is empty, even though the above equation may say otherwise in the case that the start node has pre-
decessors.

9

Solving the Equations

� As for RD's, there may be many solutions.

� For AE's, we want the largest solution, so we don't rule out the availability of any expression unless
we can really �nd a path along which it is unavailable.

� Largest solution exists because the union of solutions is a solution.

Thus, initialize the IN's and OUT's to make every expression available everywhere except at the initial
node. Iteratively apply the rules until we stabilize.

� Unlike RD's, now things only get thrown out of IN's and OUT's. When we converge, it can be shown
that we have the largest solution to the equations.

IN(start) := ;;
OUT(start) := GEN(start);

/* above initializes start node;

it never changes */

for B other than start do

OUT(B) :=

(all expressions � KILL(B))

[GEN(B);

while changes to OUT's occur do

for B other than start do begin

IN(B) :=

\pred. P of B OUT(P);

OUT(B) :=

(IN(B) � KILL(B))

[GEN(B)

end

10

Example

B1 Z := X + Y

B2 X := A + B A := X + Y B3

B4 B := � � �

B1 B2 B3 B4

GEN X + Y A +B X + Y none
KILL none X + Y A +B A +B

Initial Round 1 Round 2

IN(B1) none none none
OUT(B1) X + Y X + Y X + Y

IN(B2) X + Y;A +B X + Y X + Y

OUT(B2) A+B A+B A+ B

IN(B3) X + Y;A +B X + Y none
OUT(B3) X + Y X + Y X + Y

IN(B4) X + Y;A +B none none
OUT(B4) X + Y none none

Using Available Expression Information

Suppose we discover that expression X + Y is available at the beginning of block B, i.e., IN(B) contains
X + Y . If there is a use of expression X + Y within B, and neither X nor Y is rede�ned, even ambiguously,
before use in B, then we may alter the ow graph to avoid the computation of X + Y within B.

1. Find all statements in the ow graph outside B that have X + Y as right side.

2. Create a new variable T to hold X + Y .

3. Replace each statement Z := X + Y by

T := X + Y

Z := T

4. Replace uses Q := X + Y in B by Q := T.

Limiting the Changes

It is possible to determine that some evaluations of X + Y found in (1) can never reach B, so they do not
have to participate in (3).

We can detect such cases by a DFA \reaching expressions."

Another approach is to trace the ow graph backwards from Q := X + Y, without going through a compu-
tation of X + Y , to see what occurrences of X + Y we meet.

Another simpli�cation: eliminate common subexpression X + Y only when it is computed in a block B1

and used in B2, and B1 dominates B2 (every path from the start to B2 goes through B1).

11

Data Structures For Available Expressions

� The bit-vector idea works for AE's as well as for RD's.

We must enumerate the expressions that appear on the right side of some statement in the program.
Then, create a table whose ith entry is a pointer to an instance of the ith expression.

Represent sets of expressions, like GEN or OUT, by bit vectors, where position i indicates the presence or
absence of the ith expression.

Set di�erence is again implemented by NOT-AND, while union is implemented by OR and intersection is
implemented by AND.

12

