
Copy Propagation

When we eliminated global CSE's we introduced copy statements of the form A := B. There are many
other sources for copy statements, such as the original source code and the intermediate code generator.

Many copy statements can be eliminated. Suppose we have a use of A in a statement like

s: X := A + Y

and on every path from the start node to s we encounter a copy A := B or B := A. Moreover, after the last
such occurrence, neither A nor B is rede�ned.

Then A and B have the same value at s, and we may replace s by

X := B + Y

This change makes no apparent di�erence, but in some cases it will make the copy statement(s) A := B

useless.

� Useless statements can be eliminated; we study this question when we take up the \reached uses"
DFA problem.

We say copy X := Y reaches point p if every path from the start node to p has an occurrence of X := Y, and
there are no defs of X or Y after the last occurrence.

De�ne IN(B) to be the set of copies that reach the beginning of block B and OUT(B) to be the set of
copies that reach the end of B.

KILL Sets

KILL(B) is the set of copies X := Y such that either X or Y may be rede�ned in B.

GEN Sets

GEN(B) is the set of copies X := Y appearing in B, with no possibility that either X or Y is subsequently
rede�ned in B.

� The equations for copy propagation are exactly the same as for AE's. Their solution is likewise the
same.

� Whether X := Y or Y := X reaches a point, the conclusion that X and Y have the same value can be
made. The only reason for distinguishing between copies in the two directions is that we want to
know whether to replace X by Y or vice-versa to help eliminate copies.

Live Variables

When we generate object code for a block, we may keep certain variables in registers during execution of
the block. If we have not given that variable a register \permanently," then we must store it on exit from
the block.

� If it were known that the variable was never subsequently used before recomputation, then we could
save the store instruction.

We call a variable X live at point p if there is some path from p along which the value of X may be used
before rede�nition. Otherwise, X is dead.
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Equations for Live Variable Analysis

The equations are similar to RD's, but data ows \backwards."

� While in RD's, we propagated de�nitions forward as far as they could go, for LV's we propagate uses
backwards until they encounter an unambiguous de�nition.

Let IN(B) be the set of variables live at the beginning of B and OUT(B) the set of variables live at the
end of B.

KILL Sets

KILL(B) = the set of variables that are unambiguously de�ned in B prior to any possible use in block B.

� To be conservative, we have to regard ambiguous uses like A := *P as a possible use of any X that P
could point to.

GEN Sets

GEN(B) = the set of variables that may be used, possibly ambiguously, before any unambiguous rede�ni-
tion in block B.

� Note that our de�nitions of GEN and KILL are motivated by the assumption that it is safe to assume
a variable is live when it isn't, but unsafe to assume it is dead when it isn't.

Transfer Equations

IN(B) = (OUT(B) � KILL(B)) [ GEN(B)

Conuence Equations

� Really \divergence rules," since they tell what happens when ow leaves a block and goes in two or
more di�erent directions.

A variable is live coming out of a block if it is used before rede�nition along some path emanating from
that block, that is, if the variable is live entering some successor block. Thus:

OUT(B) = [succ. S of B IN(S)
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Algorithm for Computing Live Variables

As always, the equations do not have a unique solution.

� We want the smallest, so we do not say a variable is live unless we can actually �nd a path along
which it might be used.

We start by assuming nothing is live on exit from any block and apply the equations until no more
changes to the IN's can be made. The process must stop because we are only adding variables to sets.

for all blocks B do

IN(B) := GEN(B);

while changes to some IN occur do

for each block B do begin

OUT(B) :=

[succ. S of B IN(S);

IN(B) :=

(OUT(B) � KILL(B))

[ GEN(B)

end

Data Structures for Live Variables

The ideas are the same as before. Identify variables with positions in a bit vector, using a table of pointers
(to the symbol table, this time).

Sets are again represented by bit vectors and the set operations by logical operations.

Reached Uses

A use of variable A is reached by a def of A if there is a path from the def to the use along which A is not
unambiguously rede�ned.

A := � � �
No unambiguous
defs of A

X := A + Y

Ambiguous Uses

Like defs, a use can be ambiguous, e.g., a procedure call or a pointer reference

A := *P

could use anything the procedure can access or the pointer P could point to.

Useless Statements

An important application of \reached uses" is in detecting useless statements. An assignment is useless i�
it has no reached uses.

� Typically, useless statements are created by the code optimizer itself, e.g., when it applies copy propa-
gation information to replace uses of A by uses of B, where A := B is the copy statement in question.
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Propagating Uses Inside Blocks

If we know what uses are reached by the end of block B, we can �nd the uses reached by statements
within B.

1. A def of A within block B reaches those uses of A that the end of B reaches, provided that there is no
subsequent, unambiguous def of A within B.

2. In any event, a def of A within B also reaches those uses of A following it in B, up to the next unam-
biguous def of A.

UD and DU Chains

Given reached uses and reaching de�nitions, we can construct for each def a list of its reached uses, called
a def-use chain.

Similarly, attach to each use a use-def chain of all its reaching defs.

� DU + UD chains make it easy to update def/use information when we eliminate statements.

Example

Consider the changes in du- and ud- links needed when one of the reached uses of a copy statement A := B

has the use of A changed to a use of B.

B := B := B := B :=

A := B A := B

:= A := A := B := A

Equations for Reached Uses

The equations are essentially the same as for LV's.

Uses are represented by pairs (s; A), giving a statement s and a variable A used (or possibly used) by s.
Thus,

s: X := Y + Z

yields (s; Y ) and (s; Z).

KILL Sets

KILL(B) = f(s; A) j block B contains an unambiguous def of Ag.

GEN Sets

GEN(B) = f(s; A) j statement s is in B, variable A is used by s (possibly ambiguously), and there are no
unambiguous defs of A prior to sg.

Transfer and Conuence Equations

The transfer and conuence equations for reached uses is exactly the same as for LV's. So is the method
of solution.
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Summary

We can classify DFA problems by

1. The direction of data ow (forward or backward).

2. The conuence operator (union or intersection).

Union Intersection

Forward Reaching Defs. Available Exprs.
Unde�ned Vars.* Copy Propagation

Backward Live Vars. Very Busy Exprs.**
Reached Uses

* Trick: Create a dummy def of every variable in a dummy start node prior to the real start node.

** De�ned in text. Expression X +Y is very busy at point p if every path from p evaluates X +Y before
rede�nition of X or Y. If so, we can save code space by evaluating X + Y at p.

Improvements to DFA Algorithms

Two possible improvements to the simple iterative DFA algorithm.

1. Using depth-�rst ordering for speedup.

2. Interval analysis: structure-based DFA.

Depth of Flow Graphs

Given a depth-�rst spanning tree for a ow graph, the depth of that ow graph (with respect to that
DFST) is the maximum number of backward (head is an ancestor of tail) edges along any acyclic path.

The concept of a \reducible" ow graph will turn out to be very important; it corresponds roughly to the
notion of a \structured" program, one in which there are no uncontrolled goto's that jump into the middle
of loops.

� If the ow graph is reducible, then \backward" = \back" (head dominates tail), and the depth is in-
dependent of the actual DFST chosen.

� An observed fact is that the average depth of ow graphs is very low.

Example

3 nested while-loops 3 nested repeat-loops
depth = 3 depth = 1

� �

� �

� �

� �

DFA by Propagation along Acyclic Paths

Many common DFA problems involve the propagation of data that may be restricted to propagation along
acyclic paths.
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Example: Reaching De�nitions

If a def reaches a point, then it does so along some acyclic path.

Example: Available Expressions

If an expression is not available at point p, there is some acyclic path to p that demonstrates this fact. Ei-
ther the expression is never computed, or it is killed after its last evaluation.

Suppose we perform a forward DFA (e.g., reaching defs) by visiting the nodes in depth-�rst order on each
pass. Then except for the backward edges, we update IN and OUT for the node at the tail of each edge
before the node at the head.

Thus, information can propagate along any path of nonbackward edges in one pass.

� Only when the path requires a backward edge does the propagation stop and wait for the next pass.

Example

1 ! � � � ! 27! 13! � � � ! 19! 8! � � � ! 42
Pass 1 Pass 2 Pass 3

As a result, if propagation along acyclic paths is su�cient, and the depth of the ow graph is d, then d+ 1
passes su�ce for DFA.

� We may need pass d+ 2 to know that we have converged.

Backward DFA

Similarly, if we are doing backward DFA, e.g., LV's, we may choose the reverse of depth-�rst order as the
order in which we visit the nodes on each pass.

If we do so, then each nonbackward edge has its head visited before its tail. We can thus propagate infor-
mation backward along any path of nonbackward edges in one pass.

� If propagation along acyclic paths is su�cient, then backwards DFA problems also converge in d + 1
passes if the ow graph has depth d and the reverse of DF order is used.

Interval Analysis

� Uses structure of ow graph.

� Especially useful when the source language allows no gotos and the structure can be determined from
the source (for-, while-, etc.).

We compute transfer functions for collections of nodes, working up the hierarchy. Finally, we apply the
transfer functions computed for the entire ow graph to \zero" (no information) and transmit the results
down the hierarchy to compute IN and OUT for every node.

� We shall de�ne intervals principally for historical reasons, and then give an equivalent, simpler ap-
proach.

Regions

A region in a ow graph is any set of nodes with a header that dominates all nodes in the set.

� Every loop, as we de�ned the term, is a region, but not vice-versa, since there may be no graph-
theoretic cycles in a region.

� For example, every node by itself is a region.
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Intervals

The interval with header h in a given ow graph is de�ned as follows.

1. h is in I.

2. If all predecessors of node n (not the start node) are in I, then n is also in I.

� Note that if there are several candidates for n, the order in which they are chosen doesn't matter; the
others will remain candidates.

3. Nothing else is in I.

Example

1

2 3

4

5

6 7

8

For instance, I(1), the interval with header 1, consists of 1 and 3. We start with 1. We add 3 because its
only predecessor, 1, is in I(1). We cannot add 2 because 4 isn't in; we can't add 4 because 6 isn't in, and
so on.

Interval Partitions

1. Start by constructing the interval whose header is the start node.

2. Until all nodes have been assigned an interval, �nd some node not yet assigned, but one of whose pre-
decessors has been assigned.

� Such a node can never be part of another's interval, so make it a header and compute its interval.

� Each interval is a region dominated by its header.

� The collection of intervals does not depend on the order in which headers are chosen in (2).

Example

1

2 3

4

5

6 7

8
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Interval Graphs

Having partitioned a graph into intervals, we can construct the interval graph for G, denoted I(G), by
making one node for each interval.

Place an arc from J to K if some node in interval J has an arc to the header of K.

� Note that an arc from J cannot enter any node of K besides the header.

Avoid arcs from a node to itself, however.

The start node of I(G) is the interval containing the start node of G.

The graph I(G) can itself have intervals computed, the graph I
�
I(G)

�
computed, and so on.

Example

1 13 13 13 all

2 3 2 2 245678

4 4 45678

5 5678

6 7

8

Hierarchy of Intervals

In this manner we group nodes into a hierarchy. That is, each interval of the original ow graph represents
a set of nodes in the obvious way.

An interval of I(G) represents the nodes of the original ow graph that the interval's nodes represent, and
so on.

Example

The hierarchy implied by our running example is:

�

�

2 �

� 4 �

1 3 5 6 7 8
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Reducible Flow Graphs

If the sequence of interval graphs leads to a graph of a single node, we say the graph is reducible.

Another equivalent de�nition of \reducible" is that the back edges (head dominates the tail) are exactly
the edges whose heads precede their tails in DF order.

� Recall that \structured" ow graphs have this property, so we expect the interval graph sequence to
lead to a single node almost always.

Node Splitting

We can guarantee that the sequence of interval graphs can be completed even if the original graph is not
reducible.

Take an irreducible graph (one that is its own interval graph) and �nd some node other than the header,
say node n.

� Node n will surely have more than one predecessor, else it could have been put in its predecessor's
interval.

Replace n by fn1; : : : ; nkg if n has k predecessors, say p1; : : : ; pk. Let the arc from pi to n now go to ni.
The successors of ni are all the successors of n.

Example

1 1 12

2 3 2 20 3 203

Since each of the introduced nodes has a unique predecessor, a pass of interval analysis will result in each
of them becoming part of someone else's interval. Thus, the process of splitting a node and doing interval
analysis results in a graph of fewer nodes.

T1-T2 Analysis

There are two simple transformations that are together equivalent to analysis by intervals.

T1

Remove an arc from a node to itself.

� ) �
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T2

Combine a node (other than the start node) with its lone predecessor.

� The latter consumes the former.

�
) �

�

� T1, T2 always produce a unique result when they are applied to a graph until no more applications
are possible.

� The result is the same as that obtained by applying interval analysis until an irreducible graph is
reached.

� Thus, another de�nition of \reducible ow graph" is one that can be reduced to a single node by T1
and T2.

Example

1 13 13 13

2 3 2 2 2

4 4 4 4

5 567 5678 5678

6 7 8

8

13 13 13 13 all all

2 2 245678 245678

45678 45678

� Each node during a T1-T2 reduction represents a collection of nodes and edges of the original graph.

� Each edge represents a collection of edges.

� The nodes and edges represented by a single node always form a region, except for the possibility that
some back edges to the header of the region are missing.

Example

The two nodes labeled 5678 in the previous example respectively represent:

5 5

6 7 6 7

8 8
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Generalized Transfer Functions

Let us consider a DFA problem like reaching de�nitions. Suppose we have reduced a ow graph by T1 and
T2 to get a hierarchy of regions (possibly with some back edges to the header removed) for the entire ow
graph.

We may associate with each region a collection of transfer functions that express what happens when we
go from the header to each of the nodes in the region.

Example: RD's

If f is the transfer function associated with node n and region R, then f(S) is the set of defs that reach
the end of n given that

1. S is the set of defs reaching the header of R, and

2. Control stays within the nodes and edges of R once reaching the header.

It is important to observe that such functions are of the form

f(S) = (S �K) [ G

� K represents defs that will be \killed" along any path to the end of n from the header.

� G represents defs in the region that appear along one or more paths to n within the region and are
not subsequently killed.

Hierarchical Computation of Transfer Functions

Basis: If the region consists of a single node B, then

fB(S) = (S � KILL(B)) [ GEN(B)
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Induction: Part I

Suppose we form region R from regions P and Q by T2, where the node representing P consumes that
representing Q.

� �

P � � � �

� �

� R

� �
Q

�

Then for n in P : fR;n(S) = fP;n(S).

If node n is in Q, let g(S) be the union of fP;m(S) for all nodes m in P that are predecessors of the header
of Q.

� Recall no other node in Q can be a successor of a node in P .

Then fR;n(S) = fQ;n
�
g(S)

�
.

This formula requires taking the union and composition of transfer functions. Since transfer functions are
of the form (S � K) [ G, we can perform these operations on functions f1(S) = (S � K1) [ G1 and
f2(S) = (S �K2) [ G2 by:

f1 [ f2 =
�
S � (K1 \ K2)

�
[ (G1 [ G2)

f2(f1) =
�
S � (K1 [ K2)

�
[ (G2 [ (G1 �K2))

Note the result is of the desired form in both cases.

Induction: Part 2

Now suppose region R is formed from a region P because the node corresponding to P has an application
of T1 applied to it.

In terms of the original graph, application of T1 means that one or more back edges to the header are
made part of the region R, while they were not part of P .

� �

P � � � � R

� �

Let g(S) be the union of fP;m(S) taken over each node m in P that is a predecessor of the header (latch)
along an arc not in P . Then

fR;n(S) = fP;n
�
g(S) [ S

�

for all n in P .

In the union, the term g(S) accounts for defs that reach a latch, are transferred to the header, and not
killed from the header to n. The term S accounts for defs reaching the header from outside.

� Note that g(S) could be replaced by g(;).

12



Interval Analysis Algorithm for RD's

Inductively, compute for larger and larger regions the transfer functions associated with that region for all
nodes in the region.

If the graph is reducible (or can be made so by node splitting), the single node to which it is reduced rep-
resents the entire graph as one region R.

It follows that fR;n(S) is the set of defs that reach the end of n starting with set S at the beginning of the
start node of the ow graph.

Since no defs are available before the start, S should be ; here. That is,

OUT(n) = fR;n(;)

We may then compute IN's by taking the union of the OUT's of the predecessors.
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