
1

Object-Relational Databases

User-Defined Types

Object ID’s

Nested Tables

2

Merging Relational and Object
Models

�Object-oriented models support
interesting data types --- not just flat
files.

� Maps, multimedia, etc.

�The relational model supports very-
high-level queries.

�Object-relational databases are an
attempt to get the best of both.

3

Evolution of DBMS’s

�Object-oriented DBMS’s failed because
they did not offer the efficiencies of
well-entrenched relational DBMS’s.

�Object-relational extensions to
relational DBMS’s capture much of the
advantages of OO, yet retain the
relation as the fundamental abstraction.

4

SQL-99 and Oracle Features

�SQL-99 includes many of the object-
relational features to be described.

�However, different DBMS’s use different
approaches.

� We’ll sometimes use features and syntax
from Oracle.

5

User Defined Types

� A user-defined type, or UDT, is
essentially a class definition, with a
structure and methods.

� Two uses:

1. As a rowtype, that is, the type of a
relation.

2. As the type of an attribute of a relation.

6

UDT Definition

CREATE TYPE <typename> AS (

<list of attribute-type pairs>

);

� Oracle syntax:

1. Add “OBJECT” as in CREATE … AS OBJECT.

2. Follow with / to have the type stored.

7

Example: UDT Definition

CREATE TYPE BarType AS (

name CHAR(20),

addr CHAR(20)

);

CREATE TYPE BeerType AS (

name CHAR(20),

manf CHAR(20)

);

8

References

�If T is a type, then REF T is the type
of a reference to T, that is, a pointer to
an object of type T.

�Often called an “object ID” in OO
systems.

�Unlike object ID’s, a REF is visible,
although it is gibberish.

9

Example: REF

CREATE TYPE MenuType AS (

bar REF BarType,

beer REF BeerType,

price FLOAT

);

�MenuType objects look like:

3.00

To a BarType
object To a BeerType

object

10

UDT’s as Rowtypes

�A table may be defined to have a
schema that is a rowtype, rather than
by listing its elements.

�Syntax:

CREATE TABLE <table name> OF

<type name>;

11

Example: Creating a Relation

CREATE TABLE Bars OF BarType {

PRIMARY KEY (name)};

CREATE TABLE Beers OF BeerType {

PRIMARY KEY (name)};

CREATE TABLE Sells OF MenuType {

PRIMARY KEY (bar, beer),

FOREIGN KEY (. . . };

Constraints
are a function
of tables, not
types.

12

Values of Relations with a Rowtype

�Technically, a relation like Bars,
declared to have a rowtype BarType, is
not a set of pairs --- it is a unary
relation, whose tuples are objects with
two components: name and addr.

�Each UDT has a type constructor of
the same name, which wraps objects of
that type.

13

Example: Type Constructor

�The query

SELECT * FROM Bars;

�Produces “tuples” such as:

BarType(’Joe’’s Bar’, ’Maple St.’)

14

Accessing Values From a Rowtype

�In Oracle, the dot works as expected.

� But it is a good idea, in Oracle, to use an
alias for every relation, when O-R features
are used.

�Example:

SELECT bb.name, bb.addr

FROM Bars bb;

15

Accessing Values: SQL-99 Approach

�In SQL-99, each attribute of a UDT has
generator (get the value) and mutator
(change the value) methods of the
same name as the attribute.

� The generator for A takes no argument,
as A().

� The mutator for A takes a new value as
argument, as A(v).

16

Example: SQL-99 Value Access

�The same query in SQL-99 is

SELECT bb.name(), bb.addr()

FROM Bars bb;

17

Inserting Rowtype Values

�In Oracle, we use a standard INSERT
statement.

� But remember that a relation with a rowtype is
really unary and needs that type constructor.

�Example:

INSERT INTO Bars VALUES(

BarType(’Joe’’s Bar’, ’Maple St.’)

);

18

Inserting Values: SQL-99 Style

1. Create a variable X of the suitable
type, using the constructor method for
that type.

2. Use the mutator methods for the
attributes to set the values of the
fields of X.

3. Insert X into the relation.

19

Example: SQL-99 Insert

�The following must be part of a
procedure, e.g., PSM, so we have a
variable newBar.

SET newBar = BarType();

newBar.name(’Joe’’s Bar’);

newBar.addr(’Maple St.’);

INSERT INTO Bars VALUES(newBar);

Mutator methods
change newBar’s
name and addr
components.

20

UDT’s as Column Types

�A UDT can be the type of an attribute.

�In either another UDT declaration, or in
a CREATE TABLE statement, use the
name of the UDT as the type of the
attribute.

21

Example: Column Type

CREATE TYPE AddrType AS (

street CHAR(30),

city CHAR(20),

zip INT

);

CREATE TABLE Drinkers (

name CHAR(30),

addr AddrType,

favBeer BeerType

);

Values of addr and
favBeer components
are objects with 3 and
2 fields, respectively.

22

Oracle Problem With Field Access

�You can access a field F of an object
that is the value of an attribute A by
A.F .

�However, you must use an alias, say rr,
for the relation R with attribute A, as
rr.A.F .

23

Example: Field Access in Oracle

�Wrong:
SELECT favBeer.name

FROM Drinkers;

�Wrong:
SELECT Drinkers.favBeer.name

FROM Drinkers;

�Right:

SELECT dd.favBeer.name

FROM Drinkers dd;

24

Following REF’s: SQL-99 Style

� A -> B makes sense if:

1. A is of type REF T.

2. B is an attribute (component) of objects of
type T.

� Denotes the value of the B component
of the object pointed to by A.

25

Example: Following REF’s

�Remember: Sells is a relation with
rowtype MenuType(bar, beer, price),
where bar and beer are REF’s to objects
of types BarType and BeerType.

�Find the beers served by Joe:

SELECT ss.beer()->name

FROM Sells ss

WHERE ss.bar()->name = ’Joe’’s Bar’;

First, use generator methods to
access the bar and beer components

Then use the
arrow to get the
names of the bar
and beer referenced

26

Following REF’s: Oracle Style

�REF-following is implicit in the dot.

�Use a REF-value, a dot and a field of the
object referred to.

�Example:

SELECT ss.beer.name

FROM Sells ss

WHERE ss.bar.name = ’Joe’’s Bar’;

27

Oracle’s DEREF Operator --
Motivation

�If we want the set of beer objects for the
beers sold by Joe, we might try:

SELECT ss.beer

FROM Sells ss

WHERE ss.bar.name = ‘Joe’’s Bar’;

�Legal, but ss.beer is a REF, hence
gibberish.

28

Using DEREF

�To see the BeerType objects, use:

SELECT DEREF(ss.beer)

FROM Sells ss

WHERE ss.bar.name = ’Joe’’s Bar’;

�Produces values like:

BeerType(’Bud’, ’Anheuser-Busch’)

29

Methods --- Oracle Syntax

�Classes are more than structures; they
may have methods.

�We’ll study the Oracle syntax.

30

Method Definitions (Oracle)

�Declare methods in CREATE TYPE.

�Define methods in a CREATE TYPE BODY
statement.

� Use PL/SQL syntax for methods.

� Variable SELF refers to the object to which
the method is applied.

31

Example: Method Declaration

�Let’s add method priceInYen to MenuType.
CREATE TYPE MenuType AS OBJECT (

bar REF BarType,

beer REF BeerType,

price FLOAT,

MEMBER FUNCTION priceInYen(rate IN FLOAT)
RETURN FLOAT,

PRAGMA RESTRICT_REFERENCES(priceInYen, WNDS)

);

/

What Oracle calls
methods.

“Write no database state.”
That is, whatever priceInYen does
it won’t modify the database.

32

Method Definition -- Oracle Style

�Form of create-body statement:

CREATE TYPE BODY <type name> AS

<method definitions = PL/SQL
procedure definitions, using

“MEMBER FUNCTION” in place of

“PROCEDURE”>

END;

/

33

Example: Method Definition

CREATE TYPE BODY MenuType AS

MEMBER FUNCTION

priceInYen(rate FLOAT) RETURN FLOAT IS

BEGIN

RETURN rate * SELF.price;

END;

END;

/

No mode (IN)
in body, just
in declaration

Use parentheses only
when there is at
least one argument

The MenuType
object to which
the method is
applied

34

Method Use

�Follow a name for an object by a dot and the
name of the method, with arguments if any.

�Example:

SELECT ss.beer.name,

ss.priceInYen(110.0)

FROM Sells ss

WHERE ss.bar.name = ’Joe’’s Bar’;

35

Order Methods: SQL-99

�Each UDT T may define two methods
called EQUAL and LESSTHAN.
� Each takes an argument of type T and is

applied to another object of type T.

� Returns TRUE if and only if the target
object is = (resp. <) the argument object.

�Allows objects of type T to be
compared by =, <, >=, etc. in WHERE
clauses and for sorting (ORDER BY).

36

Order Methods: Oracle

�We may declare any one method for a
UDT to be an order method.

�The order method returns a value <0,
=0, or >0, as the value of object SELF
is <, =, or > the argument object.

37

Example: Order Method Declaration

�Order BarType objects by name:
CREATE TYPE BarType AS OBJECT (

name CHAR(20),

addr CHAR(20),

ORDER MEMBER FUNCTION before(

bar2 IN BarType) RETURN INT,

PRAGMA RESTRICT_REFERENCES(before,

WNDS, RNDS, WNPS, RNPS)

);

/ Read/write no database state/package state. A
“package” is a collection of procedures and variables
that can communicate values among them.

38

Example: Order Method Definition

CREATE TYPE BODY BarType AS

ORDER MEMBER FUNCTION

before(bar2 BarType) RETURN INT IS

BEGIN

IF SELF.name < bar2.name THEN RETURN –1;

ELSIF SELF.name = bar2.name THEN RETURN 0;

ELSE RETURN 1;

END IF;

END;

END;

/

39

Oracle Nested Tables

�Allows values of tuple components to
be whole relations.

�If T is a UDT, we can create a type S
whose values are relations with rowtype
T, by:

CREATE TYPE S AS TABLE OF T ;

40

Example: Nested Table Type

CREATE TYPE BeerType AS OBJECT (

name CHAR(20),

kind CHAR(10),

color CHAR(10)

);

/

CREATE TYPE BeerTableType AS

TABLE OF BeerType;

/

41

Example --- Continued

�Use BeerTableType in a Manfs relation that
stores the set of beers by each manufacturer
in one tuple for that manufacturer.

CREATE TABLE Manfs (

name CHAR(30),

addr CHAR(50),

beers beerTableType

);

42

Storing Nested Relations

�Oracle doesn’t really store each nested
table as a separate relation --- it just
makes it look that way.

�Rather, there is one relation R in which
all the tuples of all the nested tables for
one attribute A are stored.

�Declare in CREATE TABLE by:

NESTED TABLE A STORE AS R

43

Example: Storing Nested Tables

CREATE TABLE Manfs (

name CHAR(30),

addr CHAR(50),

beers beerTableType

)

NESTED TABLE beers STORE AS BeerTable;

Note where the semicolon
goes and doesn’t go.

44

Querying a Nested Table

� We can print the value of a nested
table like any other value.

� But these values have two type
constructors:

1. For the table.

2. For the type of tuples in the table.

45

Example: Query a Nested Table

�Find the beers by Anheuser-Busch:

SELECT beers FROM Manfs

WHERE name = ’Anheuser-Busch’;

�Produces one value like:

BeerTableType(

BeerType(’Bud’, ’lager’, ’yellow’),

BeerType(’Lite’, ’malt’, ’pale’),…

)

46

Querying Within a Nested Table

�A nested table can be converted to an
ordinary relation by applying THE(…).

�This relation can be used in FROM
clauses like any other relation.

47

Example: Use of THE

�Find the ales made by Anheuser-Busch:

SELECT bb.name

FROM THE(

SELECT beers

FROM Manfs

WHERE name = ’Anheuser-Busch’

) bb

WHERE bb.kind = ’ale’;

The one nested
table for the
Anheuser-Busch
beers

An alias for the nested
table, which has no name

48

Turning Relations Into Nested
Tables

�Any relation with the proper number
and types of attributes can become the
value of a nested table.

�Use CAST(MULTISET(…) AS <type>)
on the relation to turn it into the value
with the proper type for a nested table.

49

Example: CAST – (1)

�Suppose we have a relation
Beers(beer, manf), where beer is a
BeerType object and manf a string ---
the manufacturer of the beer.

�We want to insert into Manfs a new
tuple, with Pete’s Brewing Co. as the
name and a set of beers that are
whatever Beers has for Pete’s.

50

Example: CAST – (2)

INSERT INTO Manfs VALUES (

’Pete’’s’, ’Palo Alto’,

CAST(

MULTISET(

SELECT bb.beer

FROM Beers bb

WHERE bb.manf = ’Pete’’s’

) AS BeerTableType

)

);

The set of BeerType
objects for Pete’s

Turn the set of objects
into a nested relation

