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More SQL

Extended Relational Algebra

Outerjoins, Grouping/Aggregation

Insert/Delete/Update
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The Extended Algebra

δ = eliminate duplicates from bags.

τ = sort tuples.

γ = grouping and aggregation.

Outerjoin : avoids “dangling tuples” = tuples 
that do not join with anything.
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Duplicate Elimination

�R1 := δ(R2).

�R1 consists of one copy of each tuple 
that appears in R2 one or more times.
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Example: Duplicate Elimination

R =  ( A B )
1 2
3 4
1 2

δ(R) = A B

1 2
3 4
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Sorting

�R1 := τL (R2).
� L is a list of some of the attributes of R2.

�R1 is the list of tuples of R2 sorted first on 
the value of the first attribute on L, then on 
the second attribute of L, and so on.
� Break ties arbitrarily.

�τ is the only operator whose result is neither 

a set nor a bag.
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Example: Sorting

R =  ( A B )
1 2
3 4
5 2

τB (R) = [(5,2), (1,2), (3,4)]
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Aggregation Operators

�Aggregation operators are not 
operators of relational algebra.

�Rather, they apply to entire columns of 
a table and produce a single result.

�The most important examples: SUM, 
AVG, COUNT, MIN, and MAX.
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Example: Aggregation

R =  ( A B )
1 3
3 4
3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3



9

Grouping Operator

� R1 := γL (R2).  L is a list of elements 

that are either:

1. Individual (grouping ) attributes.

2. AGG(A ), where AGG is one of the 
aggregation operators and A is an 
attribute.

• An arrow and a new attribute name renames 
the component.
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Applying γL(R)

� Group R according to all the grouping 
attributes on list L.
� That is: form one group for each distinct list 

of values for those attributes in R.

� Within each group, compute AGG(A ) for 
each aggregation on list L.

� Result has one tuple for each group:

1. The grouping attributes and

2. Their group’s aggregations. 
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Example: Grouping/Aggregation

R =  ( A B C )
1 2 3
4 5 6
1 2 5

γA,B,AVG(C)->X (R) = ??

First, group R by A and B :
A B C
1 2 3
1 2 5
4 5 6

Then, average C
within groups:

A B X
1 2 4
4 5 6
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Outerjoin

�Suppose we join R�C S.

�A tuple of R that has no tuple of S with 
which it joins is said to be dangling.

� Similarly for a tuple of S.

�Outerjoin preserves dangling tuples by 
padding them NULL.
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Example: Outerjoin

R =  ( A B ) S =  ( B C )
1 2 2 3
4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling.

R OUTERJOIN S = A B C
1 2 3
4 5 NULL
NULL 6 7
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Now --- Back to SQL

Each Operation Has a SQL 
Equivalent
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Outerjoins

� R OUTER JOIN S is the core of an 
outerjoin expression.  It is modified by:
1. Optional NATURAL in front of OUTER.

2. Optional ON <condition> after JOIN.

3. Optional LEFT, RIGHT, or FULL before 
OUTER.
� LEFT = pad dangling tuples of R only.

� RIGHT = pad dangling tuples of S only.

� FULL = pad both; this choice is the default.

Only one
of these
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Aggregations

�SUM, AVG, COUNT, MIN, and MAX can 
be applied to a column in a SELECT 
clause to produce that aggregation on 
the column.

�Also, COUNT(*) counts the number of 
tuples.
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Example: Aggregation

�From Sells(bar, beer, price), find the 
average price of Bud:

SELECT AVG(price)

FROM Sells

WHERE beer = ’Bud’;
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Eliminating Duplicates in an 
Aggregation

�Use DISTINCT inside an aggregation.

�Example: find the number of different
prices charged for Bud:

SELECT COUNT(DISTINCT price)

FROM Sells

WHERE beer = ’Bud’;
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NULL’s Ignored in Aggregation

�NULL never contributes to a sum, 
average, or count, and can never be the 
minimum or maximum of a column.

�But if there are no non-NULL values in 
a column, then the result of the 
aggregation is NULL.

� Exception: COUNT of an empty set is 0.
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Example: Effect of NULL’s

SELECT count(*)

FROM Sells

WHERE beer = ’Bud’;

SELECT count(price)

FROM Sells

WHERE beer = ’Bud’;

The number of bars
that sell Bud.

The number of bars
that sell Bud at a
known price.
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Grouping

�We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a 
list of attributes.

�The relation that results from the 
SELECT-FROM-WHERE is grouped 
according to the values of all those 
attributes, and any aggregation is 
applied only within each group.
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Example: Grouping

�From Sells(bar, beer, price), find the 
average price for each beer:

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer;

beer AVG(price)
Bud 2.33
… …
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Example: Grouping

�From Sells(bar, beer, price) and 
Frequents(drinker, bar), find for each drinker 
the average price of Bud at the bars they 
frequent:

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = ’Bud’ AND

Frequents.bar = Sells.bar

GROUP BY drinker;

Compute all
drinker-bar-
price triples
for Bud.

Then group
them by
drinker.
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Restriction on SELECT Lists 
With Aggregation

� If any aggregation is used, then each 
element of the SELECT list must be 
either:

1. Aggregated, or

2. An attribute on the GROUP BY list.
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Illegal Query Example

�You might think you could find the bar 
that sells Bud the cheapest by:

SELECT bar, MIN(price)SELECT bar, MIN(price)SELECT bar, MIN(price)SELECT bar, MIN(price)
FROM SellsFROM SellsFROM SellsFROM Sells
WHERE beer = ’Bud’;WHERE beer = ’Bud’;WHERE beer = ’Bud’;WHERE beer = ’Bud’;

�But this query is illegal in SQL.
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HAVING Clauses

�HAVING <condition> may follow a 
GROUP BY clause.

�If so, the condition applies to each 
group, and groups not satisfying the 
condition are eliminated.
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Example: HAVING

�From Sells(bar, beer, price) and 
Beers(name, manf), find the average 
price of those beers that are either 
served in at least three bars or are 
manufactured by Pete’s.
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Solution

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer

HAVING COUNT(bar) >= 3 OR

beer IN (SELECT name

FROM Beers

WHERE manf = ’Pete’’s’);

Beers manu-
factured by
Pete’s.

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Pete’s.
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Requirements on HAVING 
Conditions

� Anything goes in a subquery.

� Outside subqueries, they may refer to 
attributes only if they are either:

1. A grouping attribute, or

2. Aggregated

(same condition as for SELECT clauses 
with aggregation).
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Database Modifications

� A modification command does not 
return a result (as a query does), but 
changes the database in some way.

� Three kinds of modifications:

1. Insert a tuple or tuples.

2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple 
or tuples.
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Insertion

�To insert a single tuple:

INSERT INTO <relation>

VALUES ( <list of values> );

�Example: add to Likes(drinker, beer)
the fact that Sally likes Bud.

INSERT INTO Likes

VALUES(’Sally’, ’Bud’);
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Specifying Attributes in INSERT

� We may add to the relation name a list of 
attributes.

� Two reasons to do so:

1. We forget the standard order of attributes for 
the relation.

2. We don’t have values for all attributes, and 
we want the system to fill in missing 
components with NULL or a default value.
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Example: Specifying Attributes

�Another way to add the fact that Sally 
likes Bud to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)

VALUES(’Bud’, ’Sally’);
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Adding Default Values

�In a CREATE TABLE statement, we can 
follow an attribute by DEFAULT and a 
value.

�When an inserted tuple has no value 
for that attribute, the default will be 
used.
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Example: Default Values

CREATE TABLE Drinkers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT ’123 Sesame St.’,

phone CHAR(16)

);
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Example: Default Values

INSERT INTO Drinkers(name)

VALUES(’Sally’);

Resulting tuple:

Sally 123 Sesame St NULL

name address phone
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Inserting Many Tuples

�We may insert the entire result of a 
query into a relation, using the form:

INSERT INTO <relation>

( <subquery> );



38

Example: Insert a Subquery

�Using Frequents(drinker, bar), enter 
into the new relation PotBuddies(name)
all of Sally’s “potential buddies,” i.e., 
those drinkers who frequent at least 
one bar that Sally also frequents.
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Solution

INSERT INTO PotBuddies

(SELECT d2.drinker

FROM Frequents d1, Frequents d2

WHERE d1.drinker = ’Sally’ AND

d2.drinker <> ’Sally’ AND

d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Sally,
the second is for
someone else,
and the bars are
the same.

The other
drinker
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Deletion

�To delete tuples satisfying a condition 
from some relation:

DELETE FROM <relation>

WHERE <condition>;
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Example: Deletion

�Delete from Likes(drinker, beer) the 
fact that Sally likes Bud:

DELETE FROM Likes

WHERE drinker = ’Sally’ AND

beer = ’Bud’;
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Example: Delete all Tuples

�Make the relation Likes empty:

DELETE FROM Likes;

�Note no WHERE clause needed.
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Example: Delete Some Tuples

�Delete from Beers(name, manf) all 
beers for which there is another beer by 
the same manufacturer.

DELETE FROM Beers b

WHERE EXISTS (

SELECT name FROM Beers

WHERE manf = b.manf AND

name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b.
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Semantics of Deletion --- (1)

�Suppose Anheuser-Busch makes only 
Bud and Bud Lite.

�Suppose we come to the tuple b for 
Bud first.

�The subquery is nonempty, because of 
the Bud Lite tuple, so we delete Bud.

�Now, when b is the tuple for Bud Lite, 
do we delete that tuple too?
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Semantics of Deletion --- (2)

� Answer: we do delete Bud Lite as well.

� The reason is that deletion proceeds 
in two stages:

1. Mark all tuples for which the WHERE 
condition is satisfied.

2. Delete the marked tuples.
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Updates

�To change certain attributes in certain 
tuples of a relation:

UPDATE <relation>

SET <list of attribute assignments>

WHERE <condition on tuples>;
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Example: Update

�Change drinker Fred’s phone number to 
555-1212:

UPDATE Drinkers

SET phone = ’555-1212’

WHERE name = ’Fred’;
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Example: Update Several Tuples

�Make $4 the maximum price for beer:

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;


