
1

More SQL

Extended Relational Algebra

Outerjoins, Grouping/Aggregation

Insert/Delete/Update

2

The Extended Algebra

δ = eliminate duplicates from bags.

τ = sort tuples.

γ = grouping and aggregation.

Outerjoin : avoids “dangling tuples” = tuples
that do not join with anything.

3

Duplicate Elimination

�R1 := δ(R2).

�R1 consists of one copy of each tuple
that appears in R2 one or more times.

4

Example: Duplicate Elimination

R = (A B)
1 2
3 4
1 2

δ(R) = A B

1 2
3 4

5

Sorting

�R1 := τL (R2).
� L is a list of some of the attributes of R2.

�R1 is the list of tuples of R2 sorted first on
the value of the first attribute on L, then on
the second attribute of L, and so on.
� Break ties arbitrarily.

�τ is the only operator whose result is neither

a set nor a bag.

6

Example: Sorting

R = (A B)
1 2
3 4
5 2

τB (R) = [(5,2), (1,2), (3,4)]

7

Aggregation Operators

�Aggregation operators are not
operators of relational algebra.

�Rather, they apply to entire columns of
a table and produce a single result.

�The most important examples: SUM,
AVG, COUNT, MIN, and MAX.

8

Example: Aggregation

R = (A B)
1 3
3 4
3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

9

Grouping Operator

� R1 := γL (R2). L is a list of elements

that are either:

1. Individual (grouping) attributes.

2. AGG(A), where AGG is one of the
aggregation operators and A is an
attribute.

• An arrow and a new attribute name renames
the component.

10

Applying γL(R)

� Group R according to all the grouping
attributes on list L.
� That is: form one group for each distinct list

of values for those attributes in R.

� Within each group, compute AGG(A) for
each aggregation on list L.

� Result has one tuple for each group:

1. The grouping attributes and

2. Their group’s aggregations.

11

Example: Grouping/Aggregation

R = (A B C)
1 2 3
4 5 6
1 2 5

γA,B,AVG(C)->X (R) = ??

First, group R by A and B :
A B C
1 2 3
1 2 5
4 5 6

Then, average C
within groups:

A B X
1 2 4
4 5 6

12

Outerjoin

�Suppose we join R�C S.

�A tuple of R that has no tuple of S with
which it joins is said to be dangling.

� Similarly for a tuple of S.

�Outerjoin preserves dangling tuples by
padding them NULL.

13

Example: Outerjoin

R = (A B) S = (B C)
1 2 2 3
4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling.

R OUTERJOIN S = A B C
1 2 3
4 5 NULL
NULL 6 7

14

Now --- Back to SQL

Each Operation Has a SQL
Equivalent

15

Outerjoins

� R OUTER JOIN S is the core of an
outerjoin expression. It is modified by:
1. Optional NATURAL in front of OUTER.

2. Optional ON <condition> after JOIN.

3. Optional LEFT, RIGHT, or FULL before
OUTER.
� LEFT = pad dangling tuples of R only.

� RIGHT = pad dangling tuples of S only.

� FULL = pad both; this choice is the default.

Only one
of these

16

Aggregations

�SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column.

�Also, COUNT(*) counts the number of
tuples.

17

Example: Aggregation

�From Sells(bar, beer, price), find the
average price of Bud:

SELECT AVG(price)

FROM Sells

WHERE beer = ’Bud’;

18

Eliminating Duplicates in an
Aggregation

�Use DISTINCT inside an aggregation.

�Example: find the number of different
prices charged for Bud:

SELECT COUNT(DISTINCT price)

FROM Sells

WHERE beer = ’Bud’;

19

NULL’s Ignored in Aggregation

�NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column.

�But if there are no non-NULL values in
a column, then the result of the
aggregation is NULL.

� Exception: COUNT of an empty set is 0.

20

Example: Effect of NULL’s

SELECT count(*)

FROM Sells

WHERE beer = ’Bud’;

SELECT count(price)

FROM Sells

WHERE beer = ’Bud’;

The number of bars
that sell Bud.

The number of bars
that sell Bud at a
known price.

21

Grouping

�We may follow a SELECT-FROM-
WHERE expression by GROUP BY and a
list of attributes.

�The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group.

22

Example: Grouping

�From Sells(bar, beer, price), find the
average price for each beer:

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer;

beer AVG(price)
Bud 2.33
… …

23

Example: Grouping

�From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Bud at the bars they
frequent:

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = ’Bud’ AND

Frequents.bar = Sells.bar

GROUP BY drinker;

Compute all
drinker-bar-
price triples
for Bud.

Then group
them by
drinker.

24

Restriction on SELECT Lists
With Aggregation

� If any aggregation is used, then each
element of the SELECT list must be
either:

1. Aggregated, or

2. An attribute on the GROUP BY list.

25

Illegal Query Example

�You might think you could find the bar
that sells Bud the cheapest by:

SELECT bar, MIN(price)SELECT bar, MIN(price)SELECT bar, MIN(price)SELECT bar, MIN(price)
FROM SellsFROM SellsFROM SellsFROM Sells
WHERE beer = ’Bud’;WHERE beer = ’Bud’;WHERE beer = ’Bud’;WHERE beer = ’Bud’;

�But this query is illegal in SQL.

26

HAVING Clauses

�HAVING <condition> may follow a
GROUP BY clause.

�If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated.

27

Example: HAVING

�From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Pete’s.

28

Solution

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer

HAVING COUNT(bar) >= 3 OR

beer IN (SELECT name

FROM Beers

WHERE manf = ’Pete’’s’);

Beers manu-
factured by
Pete’s.

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Pete’s.

29

Requirements on HAVING
Conditions

� Anything goes in a subquery.

� Outside subqueries, they may refer to
attributes only if they are either:

1. A grouping attribute, or

2. Aggregated

(same condition as for SELECT clauses
with aggregation).

30

Database Modifications

� A modification command does not
return a result (as a query does), but
changes the database in some way.

� Three kinds of modifications:

1. Insert a tuple or tuples.

2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple
or tuples.

31

Insertion

�To insert a single tuple:

INSERT INTO <relation>

VALUES (<list of values>);

�Example: add to Likes(drinker, beer)
the fact that Sally likes Bud.

INSERT INTO Likes

VALUES(’Sally’, ’Bud’);

32

Specifying Attributes in INSERT

� We may add to the relation name a list of
attributes.

� Two reasons to do so:

1. We forget the standard order of attributes for
the relation.

2. We don’t have values for all attributes, and
we want the system to fill in missing
components with NULL or a default value.

33

Example: Specifying Attributes

�Another way to add the fact that Sally
likes Bud to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)

VALUES(’Bud’, ’Sally’);

34

Adding Default Values

�In a CREATE TABLE statement, we can
follow an attribute by DEFAULT and a
value.

�When an inserted tuple has no value
for that attribute, the default will be
used.

35

Example: Default Values

CREATE TABLE Drinkers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50)

DEFAULT ’123 Sesame St.’,

phone CHAR(16)

);

36

Example: Default Values

INSERT INTO Drinkers(name)

VALUES(’Sally’);

Resulting tuple:

Sally 123 Sesame St NULL

name address phone

37

Inserting Many Tuples

�We may insert the entire result of a
query into a relation, using the form:

INSERT INTO <relation>

(<subquery>);

38

Example: Insert a Subquery

�Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Sally’s “potential buddies,” i.e.,
those drinkers who frequent at least
one bar that Sally also frequents.

39

Solution

INSERT INTO PotBuddies

(SELECT d2.drinker

FROM Frequents d1, Frequents d2

WHERE d1.drinker = ’Sally’ AND

d2.drinker <> ’Sally’ AND

d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Sally,
the second is for
someone else,
and the bars are
the same.

The other
drinker

40

Deletion

�To delete tuples satisfying a condition
from some relation:

DELETE FROM <relation>

WHERE <condition>;

41

Example: Deletion

�Delete from Likes(drinker, beer) the
fact that Sally likes Bud:

DELETE FROM Likes

WHERE drinker = ’Sally’ AND

beer = ’Bud’;

42

Example: Delete all Tuples

�Make the relation Likes empty:

DELETE FROM Likes;

�Note no WHERE clause needed.

43

Example: Delete Some Tuples

�Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b

WHERE EXISTS (

SELECT name FROM Beers

WHERE manf = b.manf AND

name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b.

44

Semantics of Deletion --- (1)

�Suppose Anheuser-Busch makes only
Bud and Bud Lite.

�Suppose we come to the tuple b for
Bud first.

�The subquery is nonempty, because of
the Bud Lite tuple, so we delete Bud.

�Now, when b is the tuple for Bud Lite,
do we delete that tuple too?

45

Semantics of Deletion --- (2)

� Answer: we do delete Bud Lite as well.

� The reason is that deletion proceeds
in two stages:

1. Mark all tuples for which the WHERE
condition is satisfied.

2. Delete the marked tuples.

46

Updates

�To change certain attributes in certain
tuples of a relation:

UPDATE <relation>

SET <list of attribute assignments>

WHERE <condition on tuples>;

47

Example: Update

�Change drinker Fred’s phone number to
555-1212:

UPDATE Drinkers

SET phone = ’555-1212’

WHERE name = ’Fred’;

48

Example: Update Several Tuples

�Make $4 the maximum price for beer:

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;

