
1

Other High-Level Design
Languages

Unified Modeling Language

Object Description Language

2

Object-Oriented DBMS’s

�Standards group: ODMG = Object Data
Management Group.

�ODL = Object Description Language,
like CREATE TABLE part of SQL.

�OQL = Object Query Language, tries to
imitate SQL in an OO framework.

3

Framework – (1)

�ODMG imagines OO-DBMS vendors
implementing an OO language like C++
with extensions (OQL) that allow the
programmer to transfer data between
the database and “host language”
seamlessly.

4

Framework – (2)

�ODL is used to define persistent
classes, whose objects are stored
permanently in the database.

� ODL classes look like Entity sets with
binary relationships, plus methods.

� ODL class definitions are part of the
extended, OO host language.

5

ODL Overview

� A class declaration includes:

1. A name for the class.

2. Optional key declaration(s).

3. Element declarations. An element is
either an attribute, a relationship, or a
method.

6

Class Definitions

class <name> {

<list of element declarations, separated

by semicolons>

}

7

Attribute and Relationship
Declarations

�Attributes are (usually) elements with a
type that does not involve classes.

attribute <type> <name>;

�Relationships connect an object to one
or more other objects of one class.

relationship <type> <name>

inverse <relationship>;

8

Inverse Relationships

�Suppose class C has a relationship R
to class D.

�Then class D must have some
relationship S to class C.

�R and S must be true inverses.

� If object d is related to object c by R,
then c must be related to d by S.

9

Example: Attributes and
Relationships

class Bar {

attribute string name;

attribute string addr;

relationship Set<Beer> serves inverse Beer::servedAt;

}

class Beer {

attribute string name;

attribute string manf;

relationship Set<Bar> servedAt inverse Bar::serves;

}

The type of relationship serves
is a set of Beer objects.

The :: operator connects
a name on the right to the
context containing that
name, on the left.

10

Types of Relationships

� The type of a relationship is either

1. A class, like Bar. If so, an object with
this relationship can be connected to only
one Bar object.

2. Set<Bar>: the object is connected to a
set of Bar objects.

3. Bag<Bar>, List<Bar>, Array<Bar>: the
object is connected to a bag, list, or array
of Bar objects.

11

Multiplicity of Relationships

�All ODL relationships are binary.

�Many-many relationships have Set<…> for
the type of the relationship and its inverse.

�Many-one relationships have Set<…> in the
relationship of the “one” and just the class for
the relationship of the “many.”

�One-one relationships have classes as the
type in both directions.

12

Example: Multiplicity

class Drinker { …

relationship Set<Beer> likes inverse Beer::fans;

relationship Beer favBeer inverse Beer::superfans;

}

class Beer { …

relationship Set<Drinker> fans inverse Drinker::likes;

relationship Set<Drinker> superfans inverse
Drinker::favBeer;

}

Many-many uses Set<…>
in both directions.

Many-one uses Set<…>
only with the “one.”

13

Another Multiplicity Example

class Drinker {

attribute … ;

relationship Drinker husband inverse wife;

relationship Drinker wife inverse husband;

relationship Set<Drinker> buddies

inverse buddies;

}

husband and wife are
one-one and inverses
of each other.

buddies is many-many and its
own inverse. Note no :: needed
if the inverse is in the same class.

14

Coping With Multiway Relationships

�ODL does not support 3-way or higher
relationships.

�We may simulate multiway
relationships by a “connecting” class,
whose objects represent tuples of
objects we would like to connect by the
multiway relationship.

15

Connecting Classes

�Suppose we want to connect classes X,
Y, and Z by a relationship R.

�Devise a class C, whose objects
represent a triple of objects (x, y, z)
from classes X, Y, and Z, respectively.

�We need three many-one relationships
from (x, y, z) to each of x, y, and z.

16

Example: Connecting Class

�Suppose we have Bar and Beer classes,
and we want to represent the price at
which each Bar sells each beer.

� A many-many relationship between Bar
and Beer cannot have a price attribute as it
did in the E/R model.

�One solution: create class Price and a
connecting class BBP to represent a
related bar, beer, and price.

17

Example -- Continued

� Since Price objects are just numbers,
a better solution is to:

1. Give BBP objects an attribute price.

2. Use two many-one relationships between
a BBP object and the Bar and Beer
objects it represents.

18

Example -- Concluded

�Here is the definition of BBP:

class BBP {

attribute price:real;

relationship Bar theBar inverse Bar::toBBP;

relationship Beer theBeer inverse Beer::toBBP;

}

�Bar and Beer must be modified to include
relationships, both called toBBP, and both of
type Set<BBP>.

19

Structs and Enums

�Attributes can have a structure (as in C)
or be an enumeration.

�Declare with

attribute [Struct or Enum] <name of

struct or enum> { <details> }

<name of attribute>;

�Details are field names and types for a
Struct, a list of constants for an Enum.

20

Example: Struct and Enum

class Bar {

attribute string name;

attribute Struct Addr

{string street, string city, int zip} address;

attribute Enum Lic

{ FULL, BEER, NONE } license;

relationship …

}

Names for the
structure and
enumeration

names of the
attributes

21

Method Declarations

� A class definition may include
declarations of methods for the class.

� Information consists of:
1. Return type, if any.

2. Method name.

3. Argument modes and types (no names).
� Modes are in, out, and inout.

4. Any exceptions the method may raise.

22

Example: Methods

real gpa(in string)raises(noGrades);

1. The method gpa returns a real number
(presumably a student’s GPA).

2. gpa takes one argument, a string
(presumably the name of the student)
and does not modify its argument.

3. gpa may raise the exception noGrades.

23

The ODL Type System

�Basic types: int, real/float, string,
enumerated types, and classes.

�Type constructors:
� Struct for structures.

� Collection types : Set, Bag, List, Array, and
Dictionary (= mapping from a domain type
to a range type).

�Relationship types can only be a class or
a single collection type applied to a class.

24

ODL Subclasses

�Usual object-oriented subclasses.

�Indicate superclass with a colon and its
name.

�Subclass lists only the properties
unique to it.

� Also inherits its superclass’ properties.

25

Example: Subclasses

�Ales are a subclass of beers:

class Ale:Beer {

attribute string color;

}

26

ODL Keys

�You can declare any number of keys for
a class.

�After the class name, add:

(key <list of keys>)

�A key consisting of more than one
attribute needs additional parentheses
around those attributes.

27

Example: Keys

class Beer (key name) { …

�name is the key for beers.

class Course (key

(dept,number),(room, hours)){

�dept and number form one key; so do
room and hours.

28

UML

�UML is designed to model software, but
has been adapted as a database
modeling language.

�Midway between E/R and ODL.

� No multiway relationships as in E/R.

� But allows attributes on binary
relationships, which ODL doesn’t.

� Has a graphical notation, unlike ODL.

29

Classes

�Sets of objects, with attributes (state)
and methods (behavior).

�Attributes have types.

�PK indicates an attribute in the primary
key (optional) of the object.

�Methods have declarations: arguments
(if any) and return type.

30

Example: Bar Class

Bar

PK Name: string
Addr: string

setName(n)
setAddr(a)
getName() : string
getAddr() : string
sellsBud() : boolean

Class Name

Attributes

Methods

31

Associations

�Binary relationships between classes.

�Represented by named lines (no
diamonds as in E/R).

�Multiplicity at each end.

�m ..n means between m and n of these
associate with one on the other end.

� * = “infinity”; e.g. 1..* means “at least
one.”

32

Example: Association

Bar Beer
1..50 Sells 0..*

33

Comparison With E/R Multiplicities

E/R UML

0..* 0..*

0..* 0..1

0..* 1..1

34

Association Classes

�Attributes on associations are
permitted.

� Called an association class.

� Analogous to attributes on relationships in
E/R.

35

Example: Association Class

Bar Beer
1..50 0..*

Sells
price: float

36

Subclasses

�Like E/R, but subclass points to
superclass with a line ending in a
triangle.

�The subclasses of a class can be:

� Complete (every object is in at least one
subclass) or partial.

� Disjoint (object in at most one subclass)
or overlapping.

37

Example: Subclasses

Beer
name: string
manf: string

Ale
color: string

38

Conversion to Relations

� We can use any of the three strategies
outlined for E/R to convert a class and
its subclasses to relations.

1. E/R-style: each subclass’ relation stores
only its own attributes, plus key.

2. OO-style: relations store attributes of
subclass and all superclasses.

3. Nulls: One relation, with NULL’s as needed.

39

Aggregations

�Relationships with implication that the
objects on one side are “owned by” or
are part of objects on the other side.

�Represented by a diamond at the end
of the connecting line, at the “owner”
side.

�Implication that in a relational schema,
owned objects are part of owner tuples.

40

Example: Aggregation

Beer
name: string
manf: string

Award
title: string
year: int

0..1 Won 0..*

41

Compositions

�Like aggregations, but with the
implication that every object is
definitely owned by one object on the
other side.

�Represented by solid diamond at
owner.

�Often used for subobjects or structured
attributes.

42

Example: Composition

Beer
name: string
manf: string

Award
title: string
year: int

1..1 Won 0..*

43

Conversion to Relations

�We could store the awards of a beer
with the beer tuple.

�Requires an object-relational or nested-
relation model for tables, since there is
no limit to the number of awards a beer
can win.

44

Example: Composition

Bar
name: string
phone: int

Addr
street:string
city: string
zip: int

1..1 Won 0..1

45

Conversion to Relations

�Since a bar has at most one address, it
is quite feasible to add the street, city,
and zip attributes of Addr to the Bars
relation.

�In object-relational databases, Addr can
be one attribute of Bars, with structure.

