
1

Finding Similar Sets

Applications

Shingling

Minhashing

Locality-Sensitive Hashing

2

Goals

� Many Web-mining problems can be
expressed as finding “similar” sets:

1. Pages with similar words, e.g., for
classification by topic.

2. NetFlix users with similar tastes in
movies, for recommendation systems.

3. Dual: movies with similar sets of fans.

4. Images of related things.

3

Similarity Algorithms

�The best techniques depend on
whether you are looking for items that
are very similar or only somewhat
similar.

�We’ll cover the “somewhat” case first,
then talk about “very.”

4

Example Problem: Comparing
Documents

�Goal: common text, not common topic.

�Special cases are easy, e.g., identical
documents, or one document contained
character-by-character in another.

�General case, where many small pieces
of one doc appear out of order in
another, is very hard.

5

Similar Documents – (2)

�Given a body of documents, e.g., the
Web, find pairs of documents with a lot of
text in common, e.g.:

� Mirror sites, or approximate mirrors.

• Application: Don’t want to show both in a search.

� Plagiarism, including large quotations.

� Similar news articles at many news sites.

• Application: Cluster articles by “same story.”

6

Three Essential Techniques for
Similar Documents

1. Shingling : convert documents, emails,
etc., to sets.

2. Minhashing : convert large sets to
short signatures, while preserving
similarity.

3. Locality-sensitive hashing : focus on
pairs of signatures likely to be similar.

7

The Big Picture

Shingling
Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Minhash-
ing

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

8

Shingles

�A k -shingle (or k -gram) for a document
is a sequence of k characters that
appears in the document.

�Example: k=2; doc = abcab. Set of 2-
shingles = {ab, bc, ca}.

� Option: regard shingles as a bag, and count
ab twice.

�Represent a doc by its set of k-shingles.

9

Working Assumption

�Documents that have lots of shingles in
common have similar text, even if the
text appears in different order.

�Careful: you must pick k large enough,
or most documents will have most
shingles.

� k = 5 is OK for short documents; k = 10 is
better for long documents.

10

Shingles: Compression Option

�To compress long shingles, we can hash
them to (say) 4 bytes.

�Represent a doc by the set of hash
values of its k-shingles.

�Two documents could (rarely) appear to
have shingles in common, when in fact
only the hash-values were shared.

11

Thought Question

�Why is it better to hash 9-shingles
(say) to 4 bytes than to use 4-shingles?

�Hint: How random are the 32-bit
sequences that result from 4-shingling?

12

MinHashing

Data as Sparse Matrices

Jaccard Similarity Measure

Constructing Signatures

13

Basic Data Model: Sets

� Many similarity problems can be
couched as finding subsets of some
universal set that have significant
intersection.

� Examples include:

1. Documents represented by their sets of
shingles (or hashes of those shingles).

2. Similar customers or products.

14

Jaccard Similarity of Sets

�The Jaccard similarity of two sets is
the size of their intersection divided by
the size of their union.

�Sim (C1, C2) = |C1∩C2|/|C1∪C2|.

15

Example: Jaccard Similarity

3 in intersection.
8 in union.
Jaccard similarity

= 3/8

16

From Sets to Boolean Matrices

�Rows = elements of the universal set.

�Columns = sets.

�1 in row e and column S if and only if e
is a member of S.

�Column similarity is the Jaccard similarity
of the sets of their rows with 1.

�Typical matrix is sparse.

17

Example: Jaccard Similarity of
Columns

C1 C2

0 1

1 0

1 1 Sim (C1, C2) =

0 0 2/5 = 0.4

1 1

0 1

*

*

*

*

*

*

*

18

Aside

�We might not really represent the data
by a boolean matrix.

�Sparse matrices are usually better
represented by the list of places where
there is a non-zero value.

�But the matrix picture is conceptually
useful.

19

When Is Similarity Interesting?

1. When the sets are so large or so many
that they cannot fit in main memory.

2. Or, when there are so many sets that
comparing all pairs of sets takes too
much time.

3. Or both.

20

Outline: Finding Similar Columns

1. Compute signatures of columns = small
summaries of columns.

2. Examine pairs of signatures to find
similar signatures.

� Essential: similarities of signatures and
columns are related.

3. Optional: check that columns with
similar signatures are really similar.

21

Warnings

1. Comparing all pairs of signatures may
take too much time, even if not too
much space.

� A job for Locality-Sensitive Hashing.

2. These methods can produce false
negatives, and even false positives (if
the optional check is not made).

22

Signatures

� Key idea: “hash” each column C to a
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a
signature in main memory for each
column.

2. Sim (C1, C2) is the same as the
“similarity” of Sig (C1) and Sig (C2).

23

Four Types of Rows

�Given columns C1 and C2, rows may be
classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

�Also, a = # rows of type a , etc.

�Note Sim (C1, C2) = a /(a +b +c).

24

Minhashing

�Imagine the rows permuted randomly.

�Define “hash” function h (C) = the
number of the first (in the permuted
order) row in which column C has 1.

�Use several (e.g., 100) independent
hash functions to create a signature.

25

Minhashing Example

Input matrix

0101

0101

1010

1010

1010

1001

0101

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

26

Surprising Property

�The probability (over all permutations
of the rows) that h (C1) = h (C2) is the
same as Sim (C1, C2).

�Both are a /(a +b +c)!

�Why?

� Look down the permuted columns C1 and
C2 until we see a 1.

� If it’s a type-a row, then h (C1) = h (C2).
If a type-b or type-c row, then not.

27

Similarity for Signatures

�The similarity of signatures is the
fraction of the hash functions in which
they agree.

28

Min Hashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

29

Minhash Signatures

�Pick (say) 100 random permutations of
the rows.

�Think of Sig (C) as a column vector.

�Let Sig (C)[i] =

according to the i th permutation, the
number of the first row that has a 1 in
column C.

30

Implementation – (1)

�Suppose 1 billion rows.

�Hard to pick a random permutation
from 1…billion.

�Representing a random permutation
requires 1 billion entries.

�Accessing rows in permuted order leads
to thrashing.

31

Implementation – (2)

� A good approximation to permuting
rows: pick 100 (?) hash functions.

� For each column c and each hash
function hi , keep a “slot” M (i, c).

� Intent: M (i, c) will become the
smallest value of hi (r) for which
column c has 1 in row r.

� I.e., hi (r) gives order of rows for i th
permuation.

32

Implementation – (3)

for each row r

for each column c

if c has 1 in row r

for each hash function hi do

if hi (r) is a smaller value than
M (i, c) then

M (i, c) := hi (r);

33

Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1 -
g(1) = 3 3 -

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2

34

Implementation – (4)

�Often, data is given by column, not
row.

� E.g., columns = documents, rows =
shingles.

�If so, sort matrix once so it is by row.

�And always compute hi (r) only once
for each row.

35

Locality-Sensitive Hashing

Focusing on Similar Minhash Signatures

Other Applications Will Follow

36

Finding Similar Pairs

�Suppose we have, in main memory, data
representing a large number of objects.

� May be the objects themselves .

� May be signatures as in minhashing.

�We want to compare each to each,
finding those pairs that are sufficiently
similar.

37

Checking All Pairs is Hard

�While the signatures of all columns may
fit in main memory, comparing the
signatures of all pairs of columns is
quadratic in the number of columns.

�Example: 106 columns implies 5*1011

column-comparisons.

�At 1 microsecond/comparison: 6 days.

38

Locality-Sensitive Hashing

�General idea: Use a function f(x,y) that
tells whether or not x and y is a
candidate pair : a pair of elements
whose similarity must be evaluated.

�For minhash matrices: Hash columns to
many buckets, and make elements of
the same bucket candidate pairs.

39

Candidate Generation From
Minhash Signatures

�Pick a similarity threshold s, a fraction
< 1.

�A pair of columns c and d is a
candidate pair if their signatures agree
in at least fraction s of the rows.

� I.e., M (i, c) = M (i, d) for at least
fraction s values of i.

40

LSH for Minhash Signatures

�Big idea: hash columns of signature
matrix M several times.

�Arrange that (only) similar columns are
likely to hash to the same bucket.

�Candidate pairs are those that hash at
least once to the same bucket.

41

Partition Into Bands

Matrix M

r rows
per band

b bands

One
signature

42

Partition into Bands – (2)

�Divide matrix M into b bands of r rows.

�For each band, hash its portion of each
column to a hash table with k buckets.

� Make k as large as possible.

�Candidate column pairs are those that hash
to the same bucket for ≥ 1 band.

�Tune b and r to catch most similar pairs,
but few nonsimilar pairs.

43

Matrix M

r rows b bands

Buckets Columns 2 and 6
are probably identical.

Columns 6 and 7 are
surely different.

44

Simplifying Assumption

�There are enough buckets that columns
are unlikely to hash to the same bucket
unless they are identical in a particular
band.

�Hereafter, we assume that “same
bucket” means “identical in that band.”

45

Example: Effect of Bands

�Suppose 100,000 columns.

�Signatures of 100 integers.

�Therefore, signatures take 40Mb.

�Want all 80%-similar pairs.

�5,000,000,000 pairs of signatures can
take a while to compare.

�Choose 20 bands of 5 integers/band.

46

Suppose C1, C2 are 80% Similar

�Probability C1, C2 identical in one
particular band: (0.8)5 = 0.328.

�Probability C1, C2 are not similar in any
of the 20 bands: (1-0.328)20 = .00035 .

� i.e., about 1/3000th of the 80%-similar
column pairs are false negatives.

47

Suppose C1, C2 Only 40% Similar

�Probability C1, C2 identical in any one
particular band: (0.4)5 = 0.01 .

�Probability C1, C2 identical in ≥ 1 of 20
bands: ≤ 20 * 0.01 = 0.2 .

�But false positives much lower for
similarities << 40%.

48

LSH Involves a Tradeoff

�Pick the number of minhashes, the
number of bands, and the number of
rows per band to balance false
positives/negatives.

�Example: if we had only 15 bands of 5
rows, the number of false positives
would go down, but the number of false
negatives would go up.

49

Analysis of LSH – What We Want

Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t

50

What One Band of One Row
Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity

51

What b Bands of r Rows Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

52

Example: b = 20; r = 5

.9996.8

.975.7

.802.6

.470.5

.186.4

.047.3

.006.2

1-(1-sr)bs

53

LSH Summary

�Tune to get almost all pairs with similar
signatures, but eliminate most pairs
that do not have similar signatures.

�Check in main memory that candidate
pairs really do have similar signatures.

�Optional: In another pass through data,
check that the remaining candidate
pairs really represent similar sets .

