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Finding Similar Sets

Applications

Shingling

Minhashing

Locality-Sensitive Hashing
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Goals

� Many Web-mining problems can be 
expressed as finding “similar” sets:

1. Pages with similar words, e.g., for 
classification by topic.

2. NetFlix users with similar tastes in 
movies, for recommendation systems.

3. Dual: movies with similar sets of fans.

4. Images of related things.
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Similarity Algorithms

�The best techniques depend on 
whether you are looking for items that 
are very similar or only somewhat
similar.

�We’ll cover the “somewhat” case first, 
then talk about “very.”
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Example Problem: Comparing 
Documents

�Goal: common text, not common topic.

�Special cases are easy, e.g., identical 
documents, or one document contained 
character-by-character in another.

�General case, where many small pieces 
of one doc appear out of order in 
another, is very hard.
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Similar Documents – (2)

�Given a body of documents, e.g., the 
Web, find pairs of documents with a lot of 
text in common, e.g.:

� Mirror sites, or approximate mirrors.

• Application: Don’t want to show both in a search.

� Plagiarism, including large quotations.

� Similar news articles at many news sites.

• Application: Cluster articles by “same story.”



6

Three Essential Techniques for 
Similar Documents

1. Shingling : convert documents, emails, 
etc., to sets.

2. Minhashing : convert large sets to 
short signatures, while preserving 
similarity.

3. Locality-sensitive hashing : focus on 
pairs of signatures likely to be similar.
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The Big Picture

Shingling
Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Minhash-
ing

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.
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Shingles

�A k -shingle (or k -gram) for a document 
is a sequence of k characters that 
appears in the document.

�Example: k=2; doc = abcab.  Set of 2-
shingles = {ab, bc, ca}.

� Option: regard shingles as a bag, and count 
ab twice.

�Represent a doc by its set of k-shingles.
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Working Assumption

�Documents that have lots of shingles in 
common have similar text, even if the 
text appears in different order.

�Careful: you must pick k large enough, 
or most documents will have most 
shingles.

� k = 5 is OK for short documents; k = 10 is 
better for long documents.
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Shingles: Compression Option

�To compress long shingles, we can hash 
them to (say) 4 bytes.

�Represent a doc by the set of hash 
values of its k-shingles.

�Two documents could (rarely) appear to 
have shingles in common, when in fact 
only the hash-values were shared.
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Thought Question

�Why is it better to hash 9-shingles 
(say) to 4 bytes than to use 4-shingles?

�Hint: How random are the 32-bit 
sequences that result from 4-shingling?
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MinHashing

Data as Sparse Matrices

Jaccard Similarity Measure

Constructing Signatures
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Basic Data Model: Sets

� Many similarity problems can be 
couched as finding subsets of some 
universal set that have significant 
intersection.

� Examples include:

1. Documents represented by their sets of 
shingles (or hashes of those shingles).

2. Similar customers or products.
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Jaccard Similarity of Sets

�The Jaccard similarity of two sets is 
the size of their intersection divided by 
the size of their union.

�Sim (C1, C2) = |C1∩C2|/|C1∪C2|.
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Example: Jaccard Similarity

3 in intersection.
8 in union.
Jaccard similarity

= 3/8
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From Sets to Boolean Matrices

�Rows = elements of the universal set.

�Columns = sets.

�1 in row e and column S if and only if e
is a member of S.

�Column similarity is the Jaccard similarity 
of the sets of their rows with 1.

�Typical matrix is sparse.
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Example: Jaccard Similarity of 
Columns

C1 C2

0 1

1 0

1 1 Sim (C1, C2) =

0 0 2/5 = 0.4

1 1

0 1

*

*

*

*

*

*

*



18

Aside

�We might not really represent the data 
by a boolean matrix.

�Sparse matrices are usually better 
represented by the list of places where 
there is a non-zero value.

�But the matrix picture is conceptually 
useful.
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When Is Similarity Interesting?

1. When the sets are so large or so many 
that they cannot fit in main memory.

2. Or, when there are so many sets that 
comparing all pairs of sets takes too 
much time.

3. Or both.
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Outline: Finding Similar Columns

1. Compute signatures of columns = small 
summaries of columns.

2. Examine pairs of signatures to find 
similar signatures.

� Essential: similarities of signatures and 
columns are related.

3. Optional: check that columns with 
similar signatures are really similar.
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Warnings

1. Comparing all pairs of signatures may 
take too much time, even if not too 
much space.

� A job for Locality-Sensitive Hashing.

2. These methods can produce false 
negatives, and even false positives (if 
the optional check is not made).
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Signatures

� Key idea: “hash” each column C to a 
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a 
signature in main memory for each 
column.

2. Sim (C1, C2) is the same as the 
“similarity” of Sig (C1) and Sig (C2).
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Four Types of Rows

�Given columns C1 and C2, rows may be 
classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

�Also, a = # rows of type a , etc.

�Note Sim (C1, C2) = a /(a +b +c ).
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Minhashing

�Imagine the rows permuted randomly.

�Define “hash” function h (C ) = the 
number of the first (in the permuted 
order) row in which column C has 1.

�Use several (e.g., 100) independent 
hash functions to create a signature.
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Minhashing Example

Input matrix 

0101

0101

1010

1010

1010

1001

0101 

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121
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Surprising Property

�The probability (over all permutations 
of the rows) that h (C1) = h (C2) is the 
same as Sim (C1, C2).

�Both are a /(a +b +c )!

�Why?

� Look down the permuted columns C1 and 
C2 until we see a 1.

� If it’s a type-a row, then h (C1) = h (C2).  
If a type-b or type-c row, then not.
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Similarity for Signatures

�The similarity of signatures is the 
fraction of the hash functions in which 
they agree.
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Min Hashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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Minhash Signatures

�Pick (say) 100 random permutations of 
the rows.

�Think of Sig (C) as a column vector.

�Let Sig (C)[i] = 

according to the i th permutation, the 
number of the first row that has a 1 in 
column C.



30

Implementation – (1)

�Suppose 1 billion rows.

�Hard to pick a random permutation 
from 1…billion.

�Representing a random permutation 
requires 1 billion entries.

�Accessing rows in permuted order leads 
to thrashing.



31

Implementation – (2)

� A good approximation to permuting 
rows: pick 100 (?) hash functions.

� For each column c and each hash 
function hi , keep a “slot” M (i, c ).

� Intent: M (i, c ) will become the 
smallest value of hi (r ) for which 
column c has 1 in row r.

� I.e., hi (r ) gives order of rows for i th 
permuation.
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Implementation – (3)

for each row r

for each column c 

if c has 1 in row r

for each hash function hi do

if hi (r ) is a smaller value than 
M (i, c ) then

M (i, c ) := hi (r );
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Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1 -
g(1) = 3 3 -

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2
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Implementation – (4)

�Often, data is given by column, not 
row.

� E.g., columns = documents, rows = 
shingles.

�If so, sort matrix once so it is by row.

�And always compute hi (r ) only once 
for each row.
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Locality-Sensitive Hashing

Focusing on Similar Minhash Signatures

Other Applications Will Follow
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Finding Similar Pairs

�Suppose we have, in main memory, data 
representing a large number of objects.

� May be the objects themselves .

� May be signatures as in minhashing.

�We want to compare each to each, 
finding those pairs that are sufficiently 
similar.
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Checking All Pairs is Hard

�While the signatures of all columns may 
fit in main memory, comparing the 
signatures of all pairs of columns is 
quadratic in the number of columns.

�Example: 106 columns implies 5*1011

column-comparisons.

�At 1 microsecond/comparison: 6 days.
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Locality-Sensitive Hashing

�General idea: Use a function f(x,y) that 
tells whether or not x and y is a 
candidate pair : a pair of elements 
whose similarity must be evaluated.

�For minhash matrices: Hash columns to 
many buckets, and make elements of 
the same bucket candidate pairs.
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Candidate Generation From 
Minhash Signatures

�Pick a similarity threshold s, a fraction 
< 1.

�A pair of columns c and d is a 
candidate pair if their signatures agree 
in at least fraction s of the rows.

� I.e., M (i, c ) = M (i, d )  for at least 
fraction s values of i.
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LSH for Minhash Signatures

�Big idea: hash columns of signature 
matrix M several times.

�Arrange that (only) similar columns are 
likely to hash to the same bucket.

�Candidate pairs are those that hash at 
least once to the same bucket.
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Partition Into Bands

Matrix M

r rows
per band

b bands

One
signature
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Partition into Bands – (2)

�Divide matrix M into b bands of r rows.

�For each band, hash its portion of each 
column to a hash table with k buckets.

� Make k as large as possible.

�Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band.

�Tune b and r to catch most similar pairs, 
but few nonsimilar pairs.
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Matrix M

r rows b bands

Buckets Columns 2 and 6
are probably identical.

Columns 6 and 7 are
surely different.
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Simplifying Assumption

�There are enough buckets that columns 
are unlikely to hash to the same bucket 
unless they are identical in a particular 
band.

�Hereafter, we assume that “same 
bucket” means “identical in that band.”
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Example: Effect of Bands

�Suppose 100,000 columns.

�Signatures of 100 integers.

�Therefore, signatures take 40Mb.

�Want all 80%-similar pairs.

�5,000,000,000 pairs of signatures can 
take a while to compare.

�Choose 20 bands of 5 integers/band.
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Suppose C1, C2 are 80% Similar

�Probability C1, C2 identical in one 
particular band: (0.8)5 = 0.328.

�Probability C1, C2 are not similar in any 
of the 20 bands: (1-0.328)20 = .00035 .

� i.e., about 1/3000th of the 80%-similar 
column pairs are false negatives.



47

Suppose C1, C2 Only 40% Similar

�Probability C1, C2 identical in any one 
particular band: (0.4)5 = 0.01 .

�Probability C1, C2 identical in ≥ 1 of 20 
bands: ≤ 20 * 0.01 = 0.2 .

�But false positives much lower for 
similarities << 40%. 
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LSH Involves a Tradeoff

�Pick the number of minhashes, the 
number of bands, and the number of 
rows per band to balance false 
positives/negatives.

�Example: if we had only 15 bands of 5 
rows, the number of false positives 
would go down, but the number of false 
negatives would go up.
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Analysis of LSH – What We Want

Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t
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What One Band of One Row 
Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity
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What b Bands of r Rows Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

s r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r 



52

Example: b = 20; r = 5

.9996.8

.975.7

.802.6

.470.5

.186.4

.047.3

.006.2

1-(1-sr)bs
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LSH Summary

�Tune to get almost all pairs with similar 
signatures, but eliminate most pairs 
that do not have similar signatures.

�Check in main memory that candidate 
pairs really do have similar signatures.

�Optional: In another pass through data, 
check that the remaining candidate 
pairs really represent similar sets .


