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Distance Measures

� Generalized LSH is based on some 
kind of “distance” between points.

� Similar points are “close.”

� Two major classes of distance 
measure:

1. Euclidean

2. Non-Euclidean
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Euclidean Vs. Non-Euclidean

�A Euclidean space has some number of 
real-valued dimensions and “dense” points.

� There is a notion of “average” of two points.

� A Euclidean distance is based on the locations 
of points in such a space.

�A Non-Euclidean distance is based on 
properties of points, but not their 
“location” in a space.
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Axioms of a Distance Measure

� d is a distance measure if it is a 
function from pairs of points to real 
numbers such that:

1. d(x,y) > 0. 

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle 
inequality ).
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Some Euclidean Distances

�L2 norm : d(x,y) = square root of the 
sum of the squares of the differences 
between x and y in each dimension.

� The most common notion of “distance.”

�L1 norm : sum of the differences in 
each dimension.

� Manhattan distance = distance if you had 
to travel along coordinates only.
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Examples of Euclidean Distances

a = (5,5)

b = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35
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Another Euclidean Distance

�L∞ norm : d(x,y) = the maximum of 
the differences between x and y in 
any dimension.

�Note: the maximum is the limit as n
goes to ∞ of the Ln norm: what you 

get by taking the n th power of the 
differences, summing and taking the    
n th root.



8

Non-Euclidean Distances

�Jaccard distance for sets = 1 minus 
Jaccard similarity.

�Cosine distance = angle between vectors 
from the origin to the points in question.

�Edit distance = number of inserts and 
deletes to change one string into another.

�Hamming Distance = number of positions 
in which bit vectors differ.
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Jaccard Distance for Sets 
(Bit-Vectors)

�Example: p1 = 10111; p2 = 10011.

�Size of intersection = 3; size of union = 
4, Jaccard similarity (not distance) = 
3/4.

�d(x,y) = 1 – (Jaccard similarity) = 1/4.
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Why J.D. Is a Distance Measure

�d(x,x) = 0 because x∩x = x∪x.

�d(x,y) = d(y,x) because union and 
intersection are symmetric.

�d(x,y) > 0 because |x∩y| < |x∪y|.

�d(x,y) < d(x,z) + d(z,y) trickier – next 
slide.
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Triangle Inequality for J.D.

1 - |x ∩z| + 1 - |y ∩z| > 1  - |x ∩y|

|x ∪z|         |y ∪z|          |x ∪y|

�Remember: |a ∩b|/|a ∪b| = probability 
that minhash(a) = minhash(b).

�Thus, 1 - |a ∩b|/|a ∪b| = probability 
that minhash(a) ≠ minhash(b).
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Triangle Inequality – (2)

�Claim: prob[minhash(x) ≠ minhash(y)] <
prob[minhash(x) ≠ minhash(z)] +
prob[minhash(z) ≠ minhash(y)]

�Proof: whenever minhash(x) ≠ minhash(y), at 
least one of minhash(x) ≠ minhash(z) and
minhash(z) ≠ minhash(y) must be true.
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Cosine Distance

�Think of a point as a vector from the 
origin (0,0,…,0) to its location.

�Two points’ vectors make an angle, 
whose cosine is the normalized dot-
product of the vectors: p1.p2/|p2||p1|.

� Example: p1 = 00111; p2 = 10011.

� p1.p2 = 2; |p1| = |p2| = √3.

� cos(θ) = 2/3; θ is about 48 degrees.
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Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

d (p1, p2) = θ = arccos(p1.p2/|p2||p1|)
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Why C.D. Is a Distance Measure

�d(x,x) = 0 because arccos(1) = 0.

�d(x,y) = d(y,x) by symmetry.

�d(x,y) > 0 because angles are chosen 
to be in the range 0 to 180 degrees.

�Triangle inequality: physical reasoning.  
If I rotate an angle from x to z and 
then from z to y, I can’t rotate less 
than from x to y.
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Edit Distance

�The edit distance of two strings is the 
number of inserts and deletes of 
characters needed to turn one into the 
other.  Equivalently:

� d(x,y) = |x| + |y| - 2|LCS(x,y)|.

� LCS = longest common subsequence = any 
longest string obtained both by deleting from 
x and deleting from y.
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Example: LCS

�x = abcde ; y = bcduve.

�Turn x into y by deleting a, then 
inserting u and v after d.

� Edit distance = 3.

�Or, LCS(x,y) = bcde.

�Note: |x| + |y| - 2|LCS(x,y)| = 
5 + 6 –2*4 = 3 = edit distance.
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Why Edit Distance Is a 
Distance Measure

�d(x,x) = 0 because 0 edits suffice.

�d(x,y) = d(y,x) because insert/delete 
are inverses of each other.

�d(x,y) > 0: no notion of negative edits.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.
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Variant Edit Distances

�Allow insert, delete, and mutate.

� Change one character into another.

�Minimum number of inserts, deletes, and 
mutates also forms a distance measure.

�Ditto for any set of operations on strings.

� Example: substring reversal OK for DNA 
sequences
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Hamming Distance

�Hamming distance is the number of 
positions in which bit-vectors differ.

�Example: p1 = 10101; p2 = 10011.

� d(p1, p2) = 2 because the bit-vectors 
differ in the 3rd and 4th positions.
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Why Hamming Distance Is a 
Distance Measure

�d(x,x) = 0 since no positions differ.

�d(x,y) = d(y,x) by symmetry of 
“different from.”

�d(x,y) > 0 since strings cannot differ in 
a negative number of positions.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.
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Families of Hash Functions

1. A “hash function” is any function that 
takes two elements and says whether 
or not they are “equal” (really, are 
candidates for similarity checking).

� Shorthand: h(x) = h(y) means “h says x
and y are equal.”

2. A family of hash functions is any set 
of functions as in (1).
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LS Families of Hash Functions

� Suppose we have a space S of points 
with a distance measure d.

� A family H of hash functions is said to 
be (d1,d2,p1,p2)-sensitive if for any x
and y in S :

1. If d(x,y) < d1, then prob. over all h in H, 
that h(x) = h(y) is at least p1.

2. If d(x,y) > d2, then prob. over all h in H, 
that h(x) = h(y) is at most p2.
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LS Families: Illustration

d1 d2

High
probability;
at least p1

Low
probability;
at most p2

???
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Example: LS Family

�Let S = sets, d = Jaccard distance, H is 
formed from the minhash functions for 
all permutations.

�Then Prob[h(x)=h(y)] = 1-d(x,y).

� Restates theorem about Jaccard similarity 
and minhashing in terms of Jaccard 
distance.
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Example: LS Family – (2)

�Claim: H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

If distance < 1/3
(so similarity > 2/3)

Then probability
that minhash values
agree is > 2/3
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Comments

1. For Jaccard similarity, minhashing 

gives us a (d1,d2,(1-d1),(1-d2))-
sensitive family for any d1 < d2.

2. The theory leaves unknown what 
happens to pairs that are at distance 
between d1 and d2.

� Consequence: no guarantees about 
fraction of false positives in that range.
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Amplifying a LS-Family

�The “bands” technique we learned for 
signature matrices carries over to this 
more general setting.

�Goal: the “S-curve” effect seen there.

�AND construction like “rows in a band.”

�OR construction like “many bands.”
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AND of Hash Functions

�Given family H, construct family H’
consisting of r functions from H.

�For h = [h1,…,hr] in H’, h(x)=h(y) if and 
only if hi(x)=hi(y) for all i.

�Theorem: If H is (d1,d2,p1,p2)-sensitive, 

then H’ is (d1,d2,(p1)
r,(p2)

r)-sensitive.

�Proof: Use fact that hi ’s are independent.
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OR of Hash Functions

�Given family H, construct family H’
consisting of b functions from H.

�For h = [h1,…,hb] in H’, h(x)=h(y) if and 
only if hi(x)=hi(y) for some i.

�Theorem: If H is (d1,d2,p1,p2)-sensitive, 

then H’ is (d1,d2,1-(1-p1)
b,1-(1-p2)

b)-
sensitive.
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Effect of AND and OR Constructions

�AND makes all probabilities shrink, but 
by choosing r correctly, we can make 
the lower probability approach 0 while 
the higher does not.

�OR makes all probabilities grow, but by 
choosing b correctly, we can make the 
upper probability approach 1 while the 
lower does not.
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Composing Constructions

�As for the signature matrix, we can use 
the AND construction followed by the 
OR construction.

� Or vice-versa.

� Or any sequence of AND’s and OR’s 
alternating.
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AND-OR Composition

�Each of the two probabilities p is 
transformed into 1-(1-pr)b.

� The “S-curve” studied before.

�Example: Take H and construct H’ by 
the AND construction with r = 4.  Then, 
from H’, construct H’’ by the OR 
construction with b = 4.
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Table for Function 1-(1-p4)4

.9860.9

.8785.8

.6666.7

.4260.6

.2275.5

.0985.4

.0320.3

.0064.2

1-(1-p4)4p

Example: Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.8785,.0064)-
sensitive family.
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OR-AND Composition

�Each of the two probabilities p is 
transformed into (1-(1-p)b)r.

� The same S-curve, mirrored horizontally 
and vertically.

�Example: Take H and construct H’ by 
the OR construction with b = 4.  Then, 
from H’, construct H’’ by the AND 
construction with r = 4.
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Table for Function (1-(1-p)4)4

.9936.8

.9680.7

.9015.6

.7725.5

.5740.4

.3334.3

.1215.2

.0140.1

(1-(1-p)4)4p

Example:Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.9936,.1215)-
sensitive family.
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Cascading Constructions

�Example: Apply the (4,4) OR-AND 
construction followed by the (4,4) AND-
OR construction.

�Transforms a (.2,.8,.8,.2)-sensitive 
family into a (.2,.8,.9999996,.0008715)-
sensitive family.

�Note this family uses 256 of the original 
hash functions.
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General Use of S-Curves

�For each S-curve 1-(1-pr)b, there is a 
threshhold t, for which 1-(1-tr)b = t.

�Above t, high probabilities are 
increased; below t, they are decreased.

�You improve the sensitivity as long as 
the low probability is less than t, and 
the high probability is greater than t. 

� Iterate as you like.
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Use of S-Curves – (2)

�Thus, we can pick any two distances x < y, 

start with a (x, y, (1-x), (1-y))-sensitive 
family, and apply constructions to produce 
a (x, y, p, q)-sensitive family, where p is 
almost 1 and q is almost 0.

�The closer to 0 and 1 we get, the more 
hash functions must be used.
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LSH for Cosine Distance

�For cosine distance, there is a technique 
analogous to minhashing for generating 

a (d1,d2,(1-d1/180),(1-d2/180))- sensitive 

family for any d1 and d2.

�Called random hyperplanes.
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Random Hyperplanes

�Pick a random vector v, which 
determines a hash function hv with two 
buckets.

�hv(x) = +1 if v.x > 0; = -1 if v.x < 0.

�LS-family H = set of all functions 
derived from any vector.

�Claim: Prob[h(x)=h(y)] = 1 – (angle 
between x and y divided by 180).
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Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v )
for which h(x)
<> h(y)

v

Hyperplanes
for which
h(x) = h(y)
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Signatures for Cosine Distance

�Pick some number of vectors, and hash 
your data for each vector.

�The result is a signature (sketch ) of +1’s 
and –1’s that can be used for LSH like the 
minhash signatures for Jaccard distance.

�But you don’t have to think this way.

�The existence of the LS-family is 
sufficient for amplification by AND/OR.
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Simplification

�We need not pick from among all 
possible vectors v to form a component 
of a sketch.

�It suffices to consider only vectors v
consisting of +1 and –1 components.
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LSH for Euclidean Distance

�Simple idea: hash functions correspond 
to lines.

�Partition the line into buckets of size a.

�Hash each point to the bucket 
containing its projection onto the line.

�Nearby points are always close; distant 
points are rarely in same bucket.
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Projection of Points

Bucket
width a

Randomly
chosen
line

Points at
distance d

θ

d cos θ

If d >> a, θ must
be close to 90o

for there to be
any chance points
go to the same
bucket.

If d << a, then
the chance the
points are in the
same bucket is
at least 1 – d /a.
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An LS-Family for Euclidean Distance

�If points are distance > 2a apart, then     
60 < θ < 90 for there to be a chance 
that the points go in the same bucket.

� I.e., at most 1/3 probability.

�If points are distance < a/2, then there 
is at least ½ chance they share a bucket.

�Yields a (a/2, 2a, 1/2, 1/3)-sensitive 
family of hash functions.
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Fixup: Euclidean Distance

�For previous distance measures, we 
could start with an (x, y, p, q)-sensitive 
family for any x < y, and drive p and q
to 1 and 0 by AND/OR constructions.

�Here, we seem to need y > 4x.
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Fixup – (2)

�But as long as x < y, the probability of 
points at distance x falling in the same 
bucket is greater than the probability of 
points at distance y doing so.

�Thus, the hash family formed by 
projecting onto lines is an (x, y, p, q)-
sensitive family for some p > q.

� Then, amplify by AND/OR constructions.


