
1

Theory of LSH

Distance Measures

LS Families of Hash Functions

S-Curves

2

Distance Measures

� Generalized LSH is based on some
kind of “distance” between points.

� Similar points are “close.”

� Two major classes of distance
measure:

1. Euclidean

2. Non-Euclidean

3

Euclidean Vs. Non-Euclidean

�A Euclidean space has some number of
real-valued dimensions and “dense” points.

� There is a notion of “average” of two points.

� A Euclidean distance is based on the locations
of points in such a space.

�A Non-Euclidean distance is based on
properties of points, but not their
“location” in a space.

4

Axioms of a Distance Measure

� d is a distance measure if it is a
function from pairs of points to real
numbers such that:

1. d(x,y) > 0.

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle
inequality).

5

Some Euclidean Distances

�L2 norm : d(x,y) = square root of the
sum of the squares of the differences
between x and y in each dimension.

� The most common notion of “distance.”

�L1 norm : sum of the differences in
each dimension.

� Manhattan distance = distance if you had
to travel along coordinates only.

6

Examples of Euclidean Distances

a = (5,5)

b = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35

7

Another Euclidean Distance

�L∞ norm : d(x,y) = the maximum of
the differences between x and y in
any dimension.

�Note: the maximum is the limit as n
goes to ∞ of the Ln norm: what you

get by taking the n th power of the
differences, summing and taking the
n th root.

8

Non-Euclidean Distances

�Jaccard distance for sets = 1 minus
Jaccard similarity.

�Cosine distance = angle between vectors
from the origin to the points in question.

�Edit distance = number of inserts and
deletes to change one string into another.

�Hamming Distance = number of positions
in which bit vectors differ.

9

Jaccard Distance for Sets
(Bit-Vectors)

�Example: p1 = 10111; p2 = 10011.

�Size of intersection = 3; size of union =
4, Jaccard similarity (not distance) =
3/4.

�d(x,y) = 1 – (Jaccard similarity) = 1/4.

10

Why J.D. Is a Distance Measure

�d(x,x) = 0 because x∩x = x∪x.

�d(x,y) = d(y,x) because union and
intersection are symmetric.

�d(x,y) > 0 because |x∩y| < |x∪y|.

�d(x,y) < d(x,z) + d(z,y) trickier – next
slide.

11

Triangle Inequality for J.D.

1 - |x ∩z| + 1 - |y ∩z| > 1 - |x ∩y|

|x ∪z| |y ∪z| |x ∪y|

�Remember: |a ∩b|/|a ∪b| = probability
that minhash(a) = minhash(b).

�Thus, 1 - |a ∩b|/|a ∪b| = probability
that minhash(a) ≠ minhash(b).

12

Triangle Inequality – (2)

�Claim: prob[minhash(x) ≠ minhash(y)] <
prob[minhash(x) ≠ minhash(z)] +
prob[minhash(z) ≠ minhash(y)]

�Proof: whenever minhash(x) ≠ minhash(y), at
least one of minhash(x) ≠ minhash(z) and
minhash(z) ≠ minhash(y) must be true.

13

Cosine Distance

�Think of a point as a vector from the
origin (0,0,…,0) to its location.

�Two points’ vectors make an angle,
whose cosine is the normalized dot-
product of the vectors: p1.p2/|p2||p1|.

� Example: p1 = 00111; p2 = 10011.

� p1.p2 = 2; |p1| = |p2| = √3.

� cos(θ) = 2/3; θ is about 48 degrees.

14

Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

d (p1, p2) = θ = arccos(p1.p2/|p2||p1|)

15

Why C.D. Is a Distance Measure

�d(x,x) = 0 because arccos(1) = 0.

�d(x,y) = d(y,x) by symmetry.

�d(x,y) > 0 because angles are chosen
to be in the range 0 to 180 degrees.

�Triangle inequality: physical reasoning.
If I rotate an angle from x to z and
then from z to y, I can’t rotate less
than from x to y.

16

Edit Distance

�The edit distance of two strings is the
number of inserts and deletes of
characters needed to turn one into the
other. Equivalently:

� d(x,y) = |x| + |y| - 2|LCS(x,y)|.

� LCS = longest common subsequence = any
longest string obtained both by deleting from
x and deleting from y.

17

Example: LCS

�x = abcde ; y = bcduve.

�Turn x into y by deleting a, then
inserting u and v after d.

� Edit distance = 3.

�Or, LCS(x,y) = bcde.

�Note: |x| + |y| - 2|LCS(x,y)| =
5 + 6 –2*4 = 3 = edit distance.

18

Why Edit Distance Is a
Distance Measure

�d(x,x) = 0 because 0 edits suffice.

�d(x,y) = d(y,x) because insert/delete
are inverses of each other.

�d(x,y) > 0: no notion of negative edits.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.

19

Variant Edit Distances

�Allow insert, delete, and mutate.

� Change one character into another.

�Minimum number of inserts, deletes, and
mutates also forms a distance measure.

�Ditto for any set of operations on strings.

� Example: substring reversal OK for DNA
sequences

20

Hamming Distance

�Hamming distance is the number of
positions in which bit-vectors differ.

�Example: p1 = 10101; p2 = 10011.

� d(p1, p2) = 2 because the bit-vectors
differ in the 3rd and 4th positions.

21

Why Hamming Distance Is a
Distance Measure

�d(x,x) = 0 since no positions differ.

�d(x,y) = d(y,x) by symmetry of
“different from.”

�d(x,y) > 0 since strings cannot differ in
a negative number of positions.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.

22

Families of Hash Functions

1. A “hash function” is any function that
takes two elements and says whether
or not they are “equal” (really, are
candidates for similarity checking).

� Shorthand: h(x) = h(y) means “h says x
and y are equal.”

2. A family of hash functions is any set
of functions as in (1).

23

LS Families of Hash Functions

� Suppose we have a space S of points
with a distance measure d.

� A family H of hash functions is said to
be (d1,d2,p1,p2)-sensitive if for any x
and y in S :

1. If d(x,y) < d1, then prob. over all h in H,
that h(x) = h(y) is at least p1.

2. If d(x,y) > d2, then prob. over all h in H,
that h(x) = h(y) is at most p2.

24

LS Families: Illustration

d1 d2

High
probability;
at least p1

Low
probability;
at most p2

???

25

Example: LS Family

�Let S = sets, d = Jaccard distance, H is
formed from the minhash functions for
all permutations.

�Then Prob[h(x)=h(y)] = 1-d(x,y).

� Restates theorem about Jaccard similarity
and minhashing in terms of Jaccard
distance.

26

Example: LS Family – (2)

�Claim: H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

If distance < 1/3
(so similarity > 2/3)

Then probability
that minhash values
agree is > 2/3

27

Comments

1. For Jaccard similarity, minhashing

gives us a (d1,d2,(1-d1),(1-d2))-
sensitive family for any d1 < d2.

2. The theory leaves unknown what
happens to pairs that are at distance
between d1 and d2.

� Consequence: no guarantees about
fraction of false positives in that range.

28

Amplifying a LS-Family

�The “bands” technique we learned for
signature matrices carries over to this
more general setting.

�Goal: the “S-curve” effect seen there.

�AND construction like “rows in a band.”

�OR construction like “many bands.”

29

AND of Hash Functions

�Given family H, construct family H’
consisting of r functions from H.

�For h = [h1,…,hr] in H’, h(x)=h(y) if and
only if hi(x)=hi(y) for all i.

�Theorem: If H is (d1,d2,p1,p2)-sensitive,

then H’ is (d1,d2,(p1)
r,(p2)

r)-sensitive.

�Proof: Use fact that hi ’s are independent.

30

OR of Hash Functions

�Given family H, construct family H’
consisting of b functions from H.

�For h = [h1,…,hb] in H’, h(x)=h(y) if and
only if hi(x)=hi(y) for some i.

�Theorem: If H is (d1,d2,p1,p2)-sensitive,

then H’ is (d1,d2,1-(1-p1)
b,1-(1-p2)

b)-
sensitive.

31

Effect of AND and OR Constructions

�AND makes all probabilities shrink, but
by choosing r correctly, we can make
the lower probability approach 0 while
the higher does not.

�OR makes all probabilities grow, but by
choosing b correctly, we can make the
upper probability approach 1 while the
lower does not.

32

Composing Constructions

�As for the signature matrix, we can use
the AND construction followed by the
OR construction.

� Or vice-versa.

� Or any sequence of AND’s and OR’s
alternating.

33

AND-OR Composition

�Each of the two probabilities p is
transformed into 1-(1-pr)b.

� The “S-curve” studied before.

�Example: Take H and construct H’ by
the AND construction with r = 4. Then,
from H’, construct H’’ by the OR
construction with b = 4.

34

Table for Function 1-(1-p4)4

.9860.9

.8785.8

.6666.7

.4260.6

.2275.5

.0985.4

.0320.3

.0064.2

1-(1-p4)4p

Example: Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.8785,.0064)-
sensitive family.

35

OR-AND Composition

�Each of the two probabilities p is
transformed into (1-(1-p)b)r.

� The same S-curve, mirrored horizontally
and vertically.

�Example: Take H and construct H’ by
the OR construction with b = 4. Then,
from H’, construct H’’ by the AND
construction with r = 4.

36

Table for Function (1-(1-p)4)4

.9936.8

.9680.7

.9015.6

.7725.5

.5740.4

.3334.3

.1215.2

.0140.1

(1-(1-p)4)4p

Example:Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.9936,.1215)-
sensitive family.

37

Cascading Constructions

�Example: Apply the (4,4) OR-AND
construction followed by the (4,4) AND-
OR construction.

�Transforms a (.2,.8,.8,.2)-sensitive
family into a (.2,.8,.9999996,.0008715)-
sensitive family.

�Note this family uses 256 of the original
hash functions.

38

General Use of S-Curves

�For each S-curve 1-(1-pr)b, there is a
threshhold t, for which 1-(1-tr)b = t.

�Above t, high probabilities are
increased; below t, they are decreased.

�You improve the sensitivity as long as
the low probability is less than t, and
the high probability is greater than t.

� Iterate as you like.

39

Use of S-Curves – (2)

�Thus, we can pick any two distances x < y,

start with a (x, y, (1-x), (1-y))-sensitive
family, and apply constructions to produce
a (x, y, p, q)-sensitive family, where p is
almost 1 and q is almost 0.

�The closer to 0 and 1 we get, the more
hash functions must be used.

40

LSH for Cosine Distance

�For cosine distance, there is a technique
analogous to minhashing for generating

a (d1,d2,(1-d1/180),(1-d2/180))- sensitive

family for any d1 and d2.

�Called random hyperplanes.

41

Random Hyperplanes

�Pick a random vector v, which
determines a hash function hv with two
buckets.

�hv(x) = +1 if v.x > 0; = -1 if v.x < 0.

�LS-family H = set of all functions
derived from any vector.

�Claim: Prob[h(x)=h(y)] = 1 – (angle
between x and y divided by 180).

42

Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v)
for which h(x)
<> h(y)

v

Hyperplanes
for which
h(x) = h(y)

43

Signatures for Cosine Distance

�Pick some number of vectors, and hash
your data for each vector.

�The result is a signature (sketch) of +1’s
and –1’s that can be used for LSH like the
minhash signatures for Jaccard distance.

�But you don’t have to think this way.

�The existence of the LS-family is
sufficient for amplification by AND/OR.

44

Simplification

�We need not pick from among all
possible vectors v to form a component
of a sketch.

�It suffices to consider only vectors v
consisting of +1 and –1 components.

45

LSH for Euclidean Distance

�Simple idea: hash functions correspond
to lines.

�Partition the line into buckets of size a.

�Hash each point to the bucket
containing its projection onto the line.

�Nearby points are always close; distant
points are rarely in same bucket.

46

Projection of Points

Bucket
width a

Randomly
chosen
line

Points at
distance d

θ

d cos θ

If d >> a, θ must
be close to 90o

for there to be
any chance points
go to the same
bucket.

If d << a, then
the chance the
points are in the
same bucket is
at least 1 – d /a.

47

An LS-Family for Euclidean Distance

�If points are distance > 2a apart, then
60 < θ < 90 for there to be a chance
that the points go in the same bucket.

� I.e., at most 1/3 probability.

�If points are distance < a/2, then there
is at least ½ chance they share a bucket.

�Yields a (a/2, 2a, 1/2, 1/3)-sensitive
family of hash functions.

48

Fixup: Euclidean Distance

�For previous distance measures, we
could start with an (x, y, p, q)-sensitive
family for any x < y, and drive p and q
to 1 and 0 by AND/OR constructions.

�Here, we seem to need y > 4x.

49

Fixup – (2)

�But as long as x < y, the probability of
points at distance x falling in the same
bucket is greater than the probability of
points at distance y doing so.

�Thus, the hash family formed by
projecting onto lines is an (x, y, p, q)-
sensitive family for some p > q.

� Then, amplify by AND/OR constructions.

