
1

Methods for High Degrees of
Similarity

Index-Based Methods

Exploiting Prefixes and Suffixes

Exploiting Length

2

Overview

�LSH-based methods are excellent for
similarity thresholds that are not too
high.

� Possibly up to 80% or 90%.

�But for similarities above that, there are
other methods that are more efficient.

� And also give exact answers.

3

Setting: Sets as Strings

� We’ll again talk about Jaccard
similarity and distance of sets.

� However, now represent sets by
strings (lists of symbols):

1. Enumerate the universal set.

2. Represent a set by the string of its
elements in sorted order.

4

Example: Shingles

�If the universal set is k-shingles, there is
a natural lexicographic order.

�Think of each shingle as a single symbol.

�Then the 2-shingling of abcad, which is
the set {ab, bc, ca, ad}, is represented by
the list ab, ad, bc, ca of length 4.

�Alternative: hash shingles; order by
bucket number.

5

Example: Words

�If we treat a document as a set of
words, we could order the words
alphabetically.

�Better: Order words lowest-frequency-
first.

�Why? We shall index documents based
on the early words in their lists.

� Documents spread over more buckets.

6

Jaccard and Edit Distances

� Suppose two sets have Jaccard distance J
and are represented by strings s1 and s2.
Let the LCS of s1 and s2 have length C
and the edit distance of s1 and s2 be E.
Then:

� 1-J = Jaccard similarity = C/(C+E).

� J = E/(C+E). Works because these
strings never repeat
a symbol, and symbols
appear in the same order.

7

Indexes

�The general approach is to build some
indexes on the set of strings.

�Then, visit each string once and use
the index to find possible candidates for
similarity.

�For thought: how does this approach
compare with bucketizing and looking
within buckets for similarity?

8

Length-Based Indexes

�The simplest thing to do is create an
index on the length of strings.

�A string of length L can be Jaccard
distance J from a string of length M
only if L×(1-J) < M < L/(1-J).

�Example: if 1-J = 90% (Jaccard
similarity), then M is between 90% and
111% of L.

9

Why the Limit on Lengths?

L

M

1-J = M/L

M = L×(1-J)

A shortest candidate

M

L

1-J = L/M
M = L/(1-J)

A longest candidate

10

B-Tree Indexes

�The B-tree is a perfect index structure
for a length-based index.

�Given a string of length L, we can find
strings in the range L×(1-J) to L/(1-J)
without looking at any candidates outside
that range.

�But just because strings are similar in
length, doesn’t mean they are similar.

11

Aside: B-Trees

�If you didn’t take CS245 yet, a B-tree is
a generalization of a binary search tree,
where each node has many children,
and each child leads to a segment of
the range of values handled by its
parent.

�Typically, a node is a disk block.

12

Aside: B-Trees – (2)

| |50| |80| |145| |190| |225| |

To values
< 50

To values
> 50, < 80

To values
> 80, < 145

Etc.

From parent

13

Prefix-Based Indexing

�If two strings are 90% similar, they
must share some symbol in their
prefixes whose length is just above
10% of the shorter.

�Thus, we can index symbols in just the
first �JL+1� positions of a string of

length L.

14

Why the Limit on Prefixes?

L

E

If two strings do not share any of the
first E symbols, then J > E/L.

Extreme case: second string has
none of the first E symbols of the
first string, but they agree thereafter.

Thus, E = JL is possible, but any larger
E is impossible. Index E+1 positions.

x

x
Must be
Equal

15

Indexing Prefixes

�Think of a bucket for each possible
symbol.

�Each string of length L is placed in the
bucket for each of its first �JL+1�

positions.

�A B-tree with symbol as key leads to
pointers to the strings.

16

Lookup

�Given a probe string s of length L,
with J the limit on Jaccard distance:

for (each symbol a among the

first �JL+1� positions of s)

look for other strings in

the bucket for a;

17

Example: Indexing Prefixes

�Let J = 0.2.

�String abcdef is indexed under a and
b.

�String acdfg is indexed under a and c.

�String bcde is indexed only under b.

�If we search for strings similar to cdef,
we need look only in the bucket for c.

18

Using Positions Within Prefixes

�If position i of string s is the first position
to match a prefix position of string t, and it
matches position j, then the edit distance
between s and t is at least i + j – 2.

�The LCS of s and t is no longer than
L-i +1, where L is the length of s.

19

Positions/Prefixes – (2)

�If J is the limit on Jaccard distance,
then remember E/(E+C) < J.

� E = i + j - 2.

� C = L – i + 1.

�Thus, (i + j – 2)/(L + j – 1) < J.

�Or, j < (JL – J – i +2)/(1 – J).

20

Positions/Prefixes – (3)

� We only need to find a candidate
once, so we may as well:

1. Visit positions of our given string in
numerical order, and

2. Assume that there have been no matches
for earlier positions.

21

Positions/Prefixes – Indexing

�Create a 2-attribute index on (symbol,
position).

�If string s has symbol a as the i th

position of its prefix, add s to the
bucket (a, i).

�A B-tree index with keys ordered first
by symbol, then position is excellent.

22

Lookup

�If we want to find matches for probe
string s of length L, do:

for (i=1; i<=J*L+1; i++) {

let s have a in position i;

for (j=1;

j<=(J*L-J-i+2)/(1-J); j++)

compare s with strings in

bucket (a, j);

}

23

Example: Lookup

�Suppose J = 0.2.

�Given probe string adegjkmprz, L=10
and the prefix is ade.

�For the i th position of the prefix, we
must look at buckets where j <
(JL – J – i +2)/(1 – J) = (3.8 – i)/0.8.

�For i = 1, j < 3; for i = 2, j < 2, and for
i = 3, j < 1.

24

Example: Lookup – (2)

�Thus, for probe adegjkmprz we look in
the following buckets: (a, 1), (a, 2), (a, 3),
(d, 1), (d, 2), (e, 1).

�Suppose string t is in (d, 3). Either:

�We saw t, because a is in position 1 or 2, or

� The edit distance is at least 3 and the length
of the LCS is at most 9 (thus the Jaccard
distance is at least ¼).

25

We Win Two Ways

1. Triangular nested loops let us look at
only half the possible buckets.

2. Strings that are much longer than the
probe string but whose prefixes have
a symbol far from the beginning that
also appears in the prefix of the probe
string are not considered at all.

26

Adding Length to the Mix

� We can index on three attributes:

1. Character at a prefix position.

2. Number of that position.

3. Length of the suffix = number of
positions in the entire string to the right
of the given position.

27

Edit Distance

� Suppose we are given probe string s,
and we find string t because its j th

position matches the i th position of s.

� A lower bound on edit distance E is:

1. i + j – 2 plus

2. The absolute difference of the lengths of
the suffixes of s and t (what follows
positions i and j, respectively).

28

Longest Common Subsequence

� Suppose we are given probe string s,
and we find string t first because its j th

position matches the i th position of s.

� If the suffixes of s and t have lengths
k and m, respectively, then an upper
bound on the length C of the LCS is
1 + min(k, m).

29

Bound on Jaccard Distance

�If J is the limit on Jaccard distance, then
E/(E+C) < J becomes:

�i + j – 2 + |k – m | <
J(i + j – 2 + |k – m | + 1 + min(k, m)).

�Thus: j + |k – m | <

(J(i – 1 + min(k, m)) – i + 2)/(1 – J).

30

Positions/Prefixes/Suffixes –
Indexing

�Create a 3-attribute index on (symbol,
position, suffix-length).

�If string s has symbol a as the i th

position of its prefix, and the length of
the suffix relative to that position is k,
add s to the bucket (a, i , k).

31

Example: Indexing

�Consider string abcde with J = 0.2.

�Prefix length = 2.

�Index in: (a, 1, 4) and (b, 2, 3).

32

Lookup

�As for the previous case, to find candidate
matches for a probe string s of length L,
with required similarity J, visit the positions
of s ’s prefix in order.

�If position i has symbol a and suffix
length k, look in index bucket (a, j, m) for
all j and m such that j + |k – m | <

(J(i – 1 + min(k, m)) – i + 2)/(1 – J).

33

Example: Lookup

�Consider abcde with J = 0.2.

�Require: j + |k – m | <

(J(i – 1 + min(k, m)) – i + 2)/(1 – J).

�For i = 1, note k = 4. We want
j + |4 –m | < (0.2min(4, m)+1)/0.8.

�Look in (a, 1, 3), (a, 1, 4), (a, 1, 5),
(a, 2, 4), (b, 1, 3).

From i = 2, k = 3,
j + |3–m | < 0.2(1+min(4, m))/0.8.

34

Pattern of Search

Length of suffix

Position

k

i = 1

35

Pattern of Search

Length of suffix

Position

k

i = 2

36

Pattern of Search

Length of suffix

Position

k

i = 3

37

Physical-Index Issues

�A B-tree on (symbol, position, length)
isn’t perfect.

� For a given symbol and position, you only
want some of the suffix lengths.

� Similar problem for any order of the
attributes.

�Several two-dimensional index
structures might work better.

