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The Market-Basket Model

�A large set of items, e.g., things sold in 
a supermarket.

�A large set of baskets, each of which is 
a small set of the items, e.g., the things 
one customer buys on one day.
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Support

�Simplest question: find sets of items 
that appear “frequently” in the baskets.

�Support for itemset I  = the number of 
baskets containing all items in I. 

�Given a support threshold s, sets of 
items that appear in > s baskets are 
called frequent itemsets.
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Example

�Items={milk, coke, pepsi, beer, juice}.

�Support = 3 baskets.
B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�Frequent itemsets: {m}, {c}, {b}, {j},     
{m, b}, {c, b}, {j, c}.
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Applications --- (1)

�Real market baskets: chain stores keep 
terabytes of information about what 
customers buy together.

� Tells how typical customers navigate 
stores, lets them position tempting items.

� Suggests tie-in “tricks,” e.g., run sale on 
diapers and raise the price of beer.

�High support needed, or no $$’s .
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Applications --- (2)

�“Baskets” = documents; “items” = 
words in those documents.

� Lets us find words that appear together 
unusually frequently, i.e., linked concepts.

�“Baskets” = sentences, “items” = 
documents containing those sentences.

� Items that appear together too often could 
represent plagiarism.
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Applications --- (3)

�“Baskets” = Web pages; “items” = 
linked pages.

� Pairs of pages with many common 
references may be about the same topic.

�“Baskets” = Web pages p ; “items” = 
pages that link to p .

� Pages with many of the same links may be 
mirrors or about the same topic.
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Important Point

�“Market Baskets” is an abstraction that 
models any many-many relationship 
between two concepts: “items” and 
“baskets.”

� Items need not be “contained” in baskets.

�The only difference is that we count co-
occurrences of items related to a 
basket, not vice-versa.
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Scale of Problem

�WalMart sells 100,000 items and can 
store billions of baskets.

�The Web has  over 100,000,000 words 
and billions of pages.
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Association Rules

�If-then rules about the contents of 
baskets.

�{i1, i2,…,ik} j means: “if a basket 

contains all of i1,…,ik then it is likely to 
contain j.

�Confidence of this association rule is 
the probability of j given i1,…,ik.
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Example

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�An association rule: {m, b} c.

� Confidence = 2/4 = 50%.

+

_

_

+
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Interest

�The interest of an association rule is 
the absolute value of the amount by 
which the confidence differs from what 
you would expect, were items selected 
independently of one another.
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Example

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�For association rule {m, b} c, item c

appears in 5/8 of the baskets.

�Interest = | 2/4 - 5/8 | = 1/8 --- not 
very interesting.
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Relationships Among Measures

�Rules with high support and confidence 
may be useful even if they are not 
“interesting.”

� We don’t care if buying bread causes
people to buy milk, or whether simply a lot 
of people buy both bread and milk.

�But high interest suggests a cause that 
might be worth investigating.
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Finding Association Rules

�A typical question: “find all association 
rules with support s and confidence c.”

� Note: “support” of an association rule is the 
support of the set of items it mentions.

�Hard part: finding the high-support 
(frequent ) itemsets.

� Checking the confidence of association rules 
involving those sets is relatively easy.
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Computation Model

�Typically, data is kept in a “flat file”
rather than a database system.

� Stored on disk.

� Stored basket-by-basket.

� Expand baskets into pairs, triples, etc. as 
you read baskets.



17

Computation Model --- (2)

�The true cost of mining disk-resident 
data is usually the number of disk I/O’s.

�In practice, association-rule algorithms 
read the data in passes --- all baskets 
read in turn.

�Thus, we measure the cost by the 
number of passes an algorithm takes.
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Main-Memory Bottleneck

�In many algorithms to find frequent 
itemsets we need to worry about how 
main memory is used.

� As we read baskets, we need to count 
something, e.g., occurrences of pairs.

� The number of different things we can 
count is limited by main memory.

� Swapping counts in/out is a disaster.
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Finding Frequent Pairs

�The hardest problem often turns out to 
be finding the frequent pairs.

�We’ll concentrate on how to do that, 
then discuss extensions to finding 
frequent triples, etc.
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Naïve Algorithm

�A simple way to find frequent pairs is:

� Read file once, counting in main memory 
the occurrences of each pair.

• Expand each basket of n items into its            
n (n -1)/2 pairs.

�Fails if #items-squared exceeds main 
memory.



21

Details of Main-Memory Counting

� There are two basic approaches:

1. Count all item pairs, using a triangular 
matrix.

2. Keep a table of triples [i, j, c] = the count 
of the pair of items {i,j } is c.

� (1) requires only (say) 4 bytes/pair; 
(2) requires 12 bytes, but only for 
those pairs with >0 counts.
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4 per pair

Method (1) Method (2)

12 per
occurring pair
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Details of Approach (1)

�Number items 1,2,…

�Keep pairs in the order {1,2}, {1,3},…, 
{1,n }, {2,3}, {2,4},…,{2,n }, {3,4},…, 
{3,n },…{n -1,n }.

�Find pair {i, j } at the position              
(i –1)(n –i /2) + j – i.

�Total number of pairs n (n –1)/2; total 
bytes about 2n 2.
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Details of Approach (2)

�You need a hash table, with i and j as the 
key, to locate (i, j, c) triples efficiently.

� Typically, the cost of the hash structure can be 
neglected.

�Total bytes used is about 12p, where p is 
the number of pairs that actually occur.

� Beats triangular matrix if at most 1/3 of 
possible pairs actually occur.



25

A-Priori Algorithm --- (1)

�A two-pass approach called a-priori
limits the need for main memory.

�Key idea: monotonicity :  if a set of 
items appears at least s times, so does 
every subset.

� Contrapositive for pairs: if item i does not 
appear in s baskets, then no pair including 
i can appear in s baskets.
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A-Priori Algorithm --- (2)

�Pass 1: Read baskets and count in main 
memory the occurrences of each item.

� Requires only memory proportional to #items.

�Pass 2: Read baskets again and count in 
main memory only those pairs both of 
which were found in Pass 1 to be frequent.

� Requires memory proportional to square of 
frequent items only.
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Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of

candidate

pairs
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Detail for A-Priori

�You can use the triangular matrix 
method with n = number of frequent 
items.

� Saves space compared with storing triples.

�Trick: number frequent items 1,2,…
and keep a table relating new numbers 
to original item numbers.
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Frequent Triples, Etc.

�For each k, we construct two sets of    
k –tuples:

� Ck = candidate k – tuples = those that 
might be frequent sets (support > s ) 
based on information from the pass for     
k –1.

� Lk = the set of truly frequent k –tuples.
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C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

First
pass

Second
pass
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A-Priori for All Frequent 
Itemsets

�One pass for each k.

�Needs room in main memory to count 
each candidate k –tuple.

�For typical market-basket data and 
reasonable support (e.g., 1%), k = 2 
requires the most memory.
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Frequent Itemsets --- (2)

�C1 = all items

�L1 = those counted on first pass to be 
frequent.

�C2 = pairs, both chosen from L1.

�In general, Ck = k –tuples each k –1 of 
which is in Lk-1.

�Lk = those candidates with support s.


