CS345 Data Mining

Crawling the Web

Start with a "seed set" of to-visit urls

Polite Crawling	
	linimize load on web servers by pacing out requests to each server
	E.g., no more than 1 request to the same server every 10 seconds
🗆 R	obot Exclusion Protocol
	Protocol for giving spiders ("robots") limited access to a website
	www.robotstxt.org/wc/norobots.html

Crawl Ordering	
Not enough storage or bandwidth to crawl entire web	
Visit "important" pages first	
Importance metrics	
In-degree	
More important pages will have more inlinks	
Page Rank	
To be discussed later	
For now, assume it is a metric we can compute	

stanford.edu experiment

□ 179K pages

Average change interval

Modeling change

- Assume changes to a web page are a sequence of random events that happen independently at a fixed average rate
- **D** Poisson process with parameter λ
- □ Let X(t) be a random variable denoting the number of changes in any time interval t $Pr[X(t)=k] = e^{-\lambda t}(\lambda t)^k/k!$ for k = 0,1,...

Memory-less distribution

- \square λ is therefore the average number of changes in unit time
- Called the rate parameter

Change Metrics (1) - Freshness

□ Freshness of element e_i at time t is $F(p_i;t) = \begin{cases} 1 & \text{if } e_i \text{ is up-to-date at time } t \\ 0 & \text{otherwise} \end{cases}$

Freshness of the database S at time t is

$$F(S;t) = \frac{1}{N} \sum_{i=1}^{N} F(p_i;t)$$

(Assume "equal importance" of pages)

Change Metrics (2) - Age

□ Age of element e_i at time t is $A(p_i; t) = \begin{cases} 0 & \text{if } e_i \text{ is up-to-date at time } t \\ t - (\text{modification time } p_i) & \text{otherwise} \end{cases}$

Age of the database S at time t is

$$A(S;t) = \frac{1}{N} \sum_{i=1}^{N} A(p_i;t)$$

(Assume "equal importance" of pages)

Change Metrics (3) - Delay **D** Suppose crawler visits page p at times τ_0, τ_1, \dots \Box Suppose page p is updated at times t_1, t_2, \dots, t_k between times τ_0 and τ_1 □ The delay associated with update t_i is $\mathsf{D}(\mathsf{t}_{\mathsf{k}}) = \tau_1 - \mathsf{t}_1$ The total delay associated with the changes to page p is $D(p) = \sum_{i} D(t_{i})$ \Box At time time τ_1 the delay drops back to 0 Total crawler delay is sum of individual page delays

Comparing the change metrics

A useful lemma

Lemma.

For page p with update rate λ , if the interval between refreshes is τ , the expected delay during this interval is $\lambda \tau^2/2$.

Proof.

Number of changes generated at between times t and t+dt = λ dt

Delay for these changes = τ -t

Total delay = $\int_0^{\tau} \lambda(\tau - t) dt$

$$= \lambda \tau^2/2$$

τ

$$\begin{array}{c} t \\ \hline 0 \\ dt \end{array}$$

Optimum resource allocation

Total number of accesses in time T = M Suppose allocate m_i fetches to page p_i Then $\sum_{i=1}^{N} m_i = M$ Interval between fetches of page p_i = T/m_i Delay for page p_i between fetches = $\frac{\lambda_i (T/m_i)^2}{2}$ Total delay for page p = $\frac{\lambda_i T^2}{2m_i}$ Minimize $f = \sum_{i=1}^{N} \frac{\lambda_i T^2}{2m_i}$

subject to $g = M - \sum_{i=1}^{N} m_i = 0$

Method of Lagrange Multipliers

To maximize or minimize a function $f(x_1,...x_n)$ subject to the constraint $g(x_1,...x_n)=0$

Introduce a new variable μ and define $h = f - \mu g$ Solve the system of equations: $\frac{\partial h}{\partial x_i} = 0$ for i = 1,...,n $g(x_{1,...}x_n)=0$

n+1 equations in n+1 variables

Optimum refresh policy

Applying the Lagrange multiplier method to our problem, we have

$$h = \sum_{i=1}^{N} \left(\frac{\lambda_i T^2}{2m_i} + \mu m_i\right) - M$$
$$\frac{\partial h}{\partial m_i} = \frac{-\lambda_i T^2}{2m_i^2} + \mu m_i$$
$$m_i = \sqrt{\frac{\lambda_i T^2}{2\mu}} = k\sqrt{\lambda_i}$$

Optimum refresh policy □ To minimize delay, we must allocate to each page a number of visits proportional to the square root of its average rate of change Very different answer to minimze the

Very different answer to minimze the freshness and age metrics; see references.

Eliminate punctuation, HTML markup, etc

Shingling

- □ Given document D, a w-shingle is a contiguous subsequence of w tokens
- The w-shingling S(D,w) of D, is the set of all w-shingles in D
- e.g., D=(a,rose,is,a,rose,is,a,rose)
- □ S(D,W) = {(a,rose,is,a),(rose,is,a,rose), (is,a,rose,is)}
- Can also define S(D,w) to be the bag of all shingles in D
 - We'll use sets in the lecture to keep it simple

Proof

 $MIN_s(M(A) \cup M(B)) = MIN_s(\pi(S(A, w)) \cup \pi(S(B, w)))$ = MIN_s(\pi(S(A, w) \cup S(B, w)))

Let α be the smallest element in $\pi(S(A, w) \cup S(B, w))$. Then

$$Pr(\alpha \in M(A) \cap M(B)) = Pr(\pi^{-1}(\alpha) \in S(A, w) \cap S(B, w))$$
$$= \frac{|S(A, w) \cap S(B, w)|}{|S(A, w) \cup S(B, w)|}$$
$$= r_w(A, B)$$

We can repeat this argument for each element of $MIN_s(\pi(S(A, w) \cup S(B, w)))$ to prove the result.

Implementation

- By increasing sample size (s) we can make it very unlikely r'(A,B) is significantly different from r_w(A,B)
 - 100-200 shingles is sufficient in practice
- Size of each shingle is still large
 - e.g., each shingle = 7 English words = 40-50 bytes
 - 100 shingles = 4K-5K
- Compute a fingerprint f for each shingle (e.g., Rabin fingerprint)
 - 40 bits is usually enough to keep estimates reasonably accurate
 - Fingerprint also eliminates need for random permutation

Finding all near-duplicates

- 1. Calculate a sketch for each document
- 2. For each document, write out the pairs <shingle_id, docId>
- **3.** Sort by shingle_id (DCM)
- In a sequential scan, generate triplets of the form <docId1,docId2,1> for pairs of docs that share a shingle (DCM)
- 5. Sort on <docId1,docId2> (DCM)
- Merge the triplets with common docids to generate triplets of the form <docId1,docId2,count> (DCM)
- 7. Output document pairs whose resemblance exceeds the threshold

