
1

Clustering

Distance Measures

Hierarchical Clustering

k -Means Algorithms

2

The Problem of Clustering

�Given a set of points, with a notion of
distance between points, group the
points into some number of clusters, so
that members of a cluster are in some
sense as close to each other as
possible.

3

Example

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

4

Problems With Clustering

�Clustering in two dimensions looks
easy.

�Clustering small amounts of data looks
easy.

�And in most cases, looks are not
deceiving.

5

The Curse of Dimensionality

�Many applications involve not 2, but 10
or 10,000 dimensions.

�High-dimensional spaces look different:
almost all pairs of points are at about
the same distance.

� Assuming random points within a bounding
box, e.g., values between 0 and 1 in each
dimension.

6

Example: SkyCat

�A catalog of 2 billion “sky objects”
represented objects by their radiation in
9 dimensions (frequency bands).

�Problem: cluster into similar objects,
e.g., galaxies, nearby stars, quasars,
etc.

�Sloan Sky Survey is a newer, better
version.

7

Example: Clustering CD’s
(Collaborative Filtering)

�Intuitively: music divides into categories,
and customers prefer a few categories.

� But what are categories really?

�Represent a CD by the customers who
bought it.

�Similar CD’s have similar sets of
customers, and vice-versa.

8

The Space of CD’s

�Think of a space with one dimension
for each customer.

� Values in a dimension may be 0 or 1 only.

�A CD’s point in this space is
(x1, x2,…, xk), where xi = 1 iff the i

th

customer bought the CD.

� Compare with the “correlated items”
matrix: rows = customers; cols. = CD’s.

9

Example: Clustering Documents

�Represent a document by a vector
(x1, x2,…, xk), where xi = 1 iff the i th

word (in some order) appears in the
document.

� It actually doesn’t matter if k is infinite;
i.e., we don’t limit the set of words.

�Documents with similar sets of words
may be about the same topic.

10

Example: Protein Sequences

�Objects are sequences of {C,A,T,G}.

�Distance between sequences is edit
distance, the minimum number of
inserts and deletes needed to turn one
into the other.

�Note there is a “distance,” but no
convenient space in which points “live.”

11

Distance Measures

� Each clustering problem is based on
some kind of “distance” between
points.

� Two major classes of distance
measure:

1. Euclidean

2. Non-Euclidean

12

Euclidean Vs. Non-Euclidean

�A Euclidean space has some number of
real-valued dimensions and “dense” points.

� There is a notion of “average” of two points.

� A Euclidean distance is based on the locations
of points in such a space.

�A Non-Euclidean distance is based on
properties of points, but not their
“location” in a space.

13

Axioms of a Distance Measure

� d is a distance measure if it is a
function from pairs of points to reals
such that:

1. d(x,y) > 0.

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle
inequality).

14

Some Euclidean Distances

�L2 norm : d(x,y) = square root of the
sum of the squares of the differences
between x and y in each dimension.

� The most common notion of “distance.”

�L1 norm : sum of the differences in
each dimension.

�Manhattan distance = distance if you had
to travel along coordinates only.

15

Examples of Euclidean Distances

x = (5,5)

y = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35

16

Another Euclidean Distance

�L∞ norm : d(x,y) = the maximum of
the differences between x and y in
any dimension.

�Note: the maximum is the limit as n
goes to ∞ of what you get by taking

the n th power of the differences,
summing and taking the n th root.

17

Non-Euclidean Distances

�Jaccard distance for sets = 1 minus
ratio of sizes of intersection and union.

�Cosine distance = angle between
vectors from the origin to the points in
question.

�Edit distance = number of inserts and
deletes to change one string into
another.

18

Jaccard Distance

�Example: p1 = 10111; p2 = 10011.

� Size of intersection = 3; size of union = 4,
Jaccard measure (not distance) = 3/4.

�Need to make a distance function
satisfying triangle inequality and other
laws.

�d(x,y) = 1 – (Jaccard measure) works.

19

Why J.D. Is a Distance Measure

�d(x,x) = 0 because x∩x = x∪x.

�d(x,y) = d(y,x) because union and
intersection are symmetric.

�d(x,y) > 0 because |x∩y| < |x∪y|.

�d(x,y) < d(x,z) + d(z,y) trickier --- next
slide.

20

Triangle Inequality for J.D.

1 - |x ∩z| + 1 - |y ∩z| > 1 - |x ∩y|

|x ∪z| |y ∪z| |x ∪y|

�Remember: |a ∩b|/|a ∪b| = probability
that minhash(a) = minhash(b).

�Thus, 1 - |a ∩b|/|a ∪b| = probability
that minhash(a) ≠ minhash(b).

21

Triangle Inequality --- (2)

�So we need to observe that
prob[minhash(x) ≠ minhash(y)] <
prob[minhash(x) ≠ minhash(z)] +
prob[minhash(z) ≠ minhash(y)]

�Clincher: whenever minhash(x) ≠ minhash(y),
one of minhash(x) ≠ minhash(z) and
minhash(z) ≠ minhash(y) must be true.

22

Cosine Distance

�Think of a point as a vector from the
origin (0,0,…,0) to its location.

�Two points’ vectors make an angle,
whose cosine is the normalized dot-
product of the vectors: p1.p2/|p2||p1|.
� Example p1 = 00111; p2 = 10011.

� p1.p2 = 2; |p1| = |p2| = √3.

� cos(θ) = 2/3; θ is about 48 degrees.

23

Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

dist(p1, p2) = θ = arccos(p1.p2/|p2||p1|)

24

Why?

p1 = (x1,y1)

p2 = (x2,0)x1

θ

Dot product is invariant under
rotation, so pick convenient
coordinate system.

x1 = p1.p2/|p2|

p1.p2 = x1*x2.
|p2| = x2.

25

Why C.D. Is a Distance Measure

�d(x,x) = 0 because arccos(1) = 0.

�d(x,y) = d(y,x) by symmetry.

�d(x,y) > 0 because angles are chosen
to be in the range 0 to 180 degrees.

�Triangle inequality: physical reasoning.
If I rotate an angle from x to z and
then from z to y, I can’t rotate less
than from x to y.

26

Edit Distance

�The edit distance of two strings is the
number of inserts and deletes of
characters needed to turn one into the
other.

�Equivalently, d(x,y) =
|x| + |y| -2|LCS(x,y)|.

� LCS = longest common subsequence =
longest string obtained both by deleting
from x and deleting from y.

27

Example

�x = abcde ; y = bcduve.

�Turn x into y by deleting a, then
inserting u and v after d.

� Edit-distance = 3.

�Or, LCS(x,y) = bcde.

�|x| + |y| - 2|LCS(x,y)| = 5 + 6 –2*4 = 3.

28

Why E.D. Is a Distance Measure

�d(x,x) = 0 because 0 edits suffice.

�d(x,y) = d(y,x) because insert/delete
are inverses of each other.

�d(x,y) > 0: no notion of negative edits.

�Triangle inequality: changing x to z
and then to y is one way to change x
to y.

29

Variant Edit Distance

�Allow insert, delete, and mutate.

� Change one character into another.

�Minimum number of inserts, deletes,
and mutates also forms a distance
measure.

30

Methods of Clustering

�Hierarchical:

� Initially, each point in cluster by itself.

� Repeatedly combine the two “closest”
clusters into one.

�Point Assignment:

�Maintain a set of clusters.

� Place points into “closest” cluster.

31

Hierarchical Clustering

�Key problem: as you build clusters, how
do you represent the location of each
cluster, to tell which pair of clusters is
closest?

�Euclidean case: each cluster has a
centroid = average of its points.

�Measure intercluster distances by distances
of centroids.

32

Example

(5,3)

o

(1,2)

o

o (2,1) o (4,1)

o (0,0) o

(5,0)

x (1.5,1.5)

x (4.5,0.5)

x (1,1)
x (4.7,1.3)

33

And in the Non-Euclidean Case?

�The only “locations” we can talk about
are the points themselves.

� I.e., there is no “average” of two points.

�Approach 1: clustroid = point “closest”
to other points.

� Treat clustroid as if it were centroid, when
computing intercluster distances.

34

“Closest”?

� Possible meanings:

1. Smallest maximum distance to the other
points.

2. Smallest average distance to other
points.

3. Smallest sum of squares of distances to
other points.

35

Example

1 2

3

4

5

6

intercluster

distance

clustroid

clustroid

36

Other Approaches to Defining
“Nearness” of Clusters

�Approach 2: intercluster distance =
minimum of the distances between any
two points, one from each cluster.

�Approach 3: Pick a notion of “cohesion”
of clusters, e.g., maximum distance from
the clustroid.

�Merge clusters whose union is most
cohesive.

37

k –Means Algorithm(s)

�Assumes Euclidean space.

�Start by picking k, the number of
clusters.

�Initialize clusters by picking one point
per cluster.

� For instance, pick one point at random,
then k -1 other points, each as far away as
possible from the previous points.

38

Populating Clusters

1. For each point, place it in the cluster
whose current centroid it is nearest.

2. After all points are assigned, fix the
centroids of the k clusters.

3. Reassign all points to their closest
centroid.
� Sometimes moves points between

clusters.

39

Example

1

2

3

4

5

6

7 8x

x

Clusters after first round

Reassigned
points

40

Getting k Right

� Try different k, looking at the change in
the average distance to centroid, as k
increases.

�Average falls rapidly until right k, then
changes little.

k

Average
distance to
centroid

Best value
of k

41

Example

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

Too few;
many long
distances
to centroid.

42

Example

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

Just right;
distances
rather short.

43

Example

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

Too many;
little improvement
in average
distance.

44

BFR Algorithm

�BFR (Bradley-Fayyad-Reina) is a variant
of k -means designed to handle very
large (disk-resident) data sets.

�It assumes that clusters are normally
distributed around a centroid in a
Euclidean space.

� Standard deviations in different dimensions
may vary.

45

BFR --- (2)

�Points are read one main-memory-full at
a time.

�Most points from previous memory loads
are summarized by simple statistics.

�To begin, from the initial load we select
the initial k centroids by some sensible
approach.

46

Initialization: k -Means

� Possibilities include:

1. Take a small sample and cluster
optimally.

2. Take a sample; pick a random point, and
then k – 1 more points, each as far from
the previously selected points as possible.

47

Three Classes of Points

1. The discard set : points close enough to
a centroid to be represented statistically.

2. The compression set : groups of points
that are close together but not close to
any centroid. They are represented
statistically, but not assigned to a cluster.

3. The retained set : isolated points.

48

Representing Sets of Points

� For each cluster, the discard set is
represented by:

1. The number of points, N.

2. The vector SUM, whose i th component is
the sum of the coordinates of the points in
the i th dimension.

3. The vector SUMSQ: i th component = sum
of squares of coordinates in i th dimension.

49

Comments

�2d + 1 values represent any number of
points.

� d = number of dimensions.

�Averages in each dimension (centroid
coordinates) can be calculated easily as
SUMi /N.

� SUMi = i
th component of SUM.

50

Comments --- (2)

�Variance of a cluster’s discard set in
dimension i can be computed by:

(SUMSQi /N) – (SUMi /N)2

�And the standard deviation is the
square root of that.

�The same statistics can represent any
compression set.

51

“Galaxies” Picture

A cluster. Its points
are in the DS.

The centroid

Compressed sets.
Their points are in
the CS.

Points in
the RS

52

Processing a “Memory-Load”
of Points

1. Find those points that are “sufficiently
close” to a cluster centroid; add those
points to that cluster and the DS.

2. Use any main-memory clustering
algorithm to cluster the remaining
points and the old RS.

� Clusters go to the CS; outlying points to
the RS.

53

Processing --- (2)

3. Adjust statistics of the clusters to
account for the new points.

4. Consider merging compressed sets in
the CS.

5. If this is the last round, merge all
compressed sets in the CS and all RS
points into their nearest cluster.

54

A Few Details . . .

�How do we decide if a point is “close
enough” to a cluster that we will add
the point to that cluster?

�How do we decide whether two
compressed sets deserve to be
combined into one?

55

How Close is Close Enough?

� We need a way to decide whether to
put a new point into a cluster.

� BFR suggest two ways:

1. The Mahalanobis distance is less than a
threshold.

2. Low likelihood of the currently nearest
centroid changing.

56

Mahalanobis Distance

� Normalized Euclidean distance.

� For point (x1,…,xk) and centroid
(c1,…,ck):
1. Normalize in each dimension: yi = |xi -ci|/σi
2. Take sum of the squares of the yi ’s.

3. Take the square root.

57

Mahalanobis Distance --- (2)

�If clusters are normally distributed in d
dimensions, then one standard
deviation corresponds to a distance √d.

� I.e., 70% of the points of the cluster will
have a Mahalanobis distance < √d.

�Accept a point for a cluster if its M.D. is
< some threshold, e.g. 4 standard
deviations.

58

Picture: Equal M.D. Regions

σ

2σ

59

Should Two CS Subclusters Be
Combined?

�Compute the variance of the combined
subcluster.

� N, SUM, and SUMSQ allow us to make that
calculation.

�Combine if the variance is below some
threshold.

