
1

More Clustering

CURE Algorithm

Clustering Streams

2

The CURE Algorithm

�Problem with BFR/k -means:

� Assumes clusters are normally distributed
in each dimension.

� And axes are fixed --- ellipses at an angle
are not OK.

�CURE:

� Assumes a Euclidean distance.

� Allows clusters to assume any shape.

3

Example: Stanford Faculty Salaries

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

4

Starting CURE

1. Pick a random sample of points that fit
in main memory.

2. Cluster these points hierarchically ---
group nearest points/clusters.

3. For each cluster, pick a sample of
points, as dispersed as possible.

4. From the sample, pick representatives
by moving them (say) 20% toward
the centroid of the cluster.

5

Example: Initial Clusters

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

6

Example: Pick Dispersed Points

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

Pick (say) 4
remote points
for each
cluster.

7

Example: Pick Dispersed Points

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

Move points
(say) 20%
toward the
centroid.

8

Finishing CURE

�Now, visit each point p in the data set.

�Place it in the “closest cluster.”

� Normal definition of “closest”: that cluster
with the closest (to p) among all the
sample points of all the clusters.

9

Clustering a Stream (New Topic)

�Assume points enter in a stream.

�Maintain a sliding window of points.

�Queries ask for clusters of points within
some suffix of the window.

�Only important issue: where are the
cluster centroids.

� There is no notion of “all the points” in a
stream.

10

BDMO Approach

�BDMO = Babcock, Datar, Motwani,
O’Callaghan.

�k –means based.

�Can use less than O(N) space for
windows of size N.

�Generalizes trick of DGIM: buckets of
increasing “weight.”

11

Recall DGIM

�Maintains a sequence of buckets B1, B2,
…

�Buckets have timestamps (most recent
stream element in bucket).

�Sizes of buckets nondecreasing.

� In DGIM size = power of 2.

�Either 1 or 2 of each size.

12

Alternative Combining Rule

�Instead of “combine the 2nd and 3rd of
any one size” we could say:

�“Combine Bi+1 and Bi if size(Bi+1 Bi) <
size(Bi-1 Bi-2 … B1).”

� If Bi+1, Bi, and Bi-1 are the same size,
inequality must hold (almost).

� If Bi-1 is smaller, it cannot hold.

13

Buckets for Clustering

�In place of “size” (number of 1’s) we
use (an approximation to) the sum of
the distances from all points to the
centroid of their cluster.

�Merge consecutive buckets if the “size”
of the merged bucket is less than the
sum of the sizes of all later buckets.

14

Consequence of Merge Rule

�In a stable list of buckets, any two
consecutive buckets are “bigger” than
all smaller buckets.

�Thus, “sizes” grow exponentially.

�If there is a limit on total “size,” then
the number of buckets is O(log N).

• N = window size.

� E.g., all points are in a fixed hypercube.

15

Outline of Algorithm

1. What do buckets look like?

� Clusters at various levels, represented by
centroids.

2. How do we merge buckets?

� Keep # of clusters at each level small.

3. What happens when we query?

� Final clustering of all clusters of all
relevant buckets.

16

Organization of Buckets

� Each bucket consists of clusters at
some number of levels.

� 4 levels in our examples.

� Clusters represented by:

1. Location of centroid.

2. Weight = number of points in the cluster.

3. Cost = upper bound on sum of distances
from member points to centroid.

17

Processing Buckets --- (1)

�Actions determined by N (window size)
and k (desired number of clusters).

�Also uses a tuning parameter for

which we use 1/4 to simplify.
� 1/ is the number of levels of clusters.

18

Processing Buckets --- (2)

�Initialize a new bucket with k new
points.

� Each is a cluster at level 0.

�If the timestamp of the oldest bucket is
outside the window, delete that bucket.

19

Level-0 Clusters

� A single point p is represented by
(p, 1, 0).

� That is:

1. A point is its own centroid.

2. The cluster has one point.

3. The sum of distances to the centroid is 0.

20

Merging Buckets --- (1)

� Needed in two situations:

1. We have to process a query, which
requires us to (temporarily) merge some
tail of the bucket sequence.

2. We have just added a new (most recent)
bucket and we need to check the rule
about two consecutive buckets being
“bigger” than all that follow.

21

Merging Buckets --- (2)

�Step 1: Take the union of the clusters at
each level.

�Step 2: If the number of clusters (points)
at level 0 is now more than N 1/4, cluster
them into k clusters.

� These become clusters at level 1.

�Steps 3,…: Repeat, going up the levels,
if needed.

22

Representing New Clusters

� Centroid = weighted average of
centroids of component clusters.

� Weight = sum of weights.

� Cost = sum over all component
clusters of:

1. Cost of component cluster.

2. Weight of component times distance from
its centroid to new centroid.

23

Example: New Centroid

+ (18,-2)

+ (3,3)

+ (12,12)

centroids

5

10

15
weights

+ (12,2)

new centroid

24

Example: New Costs

+ (18,-2)

+ (3,3)

+ (12,12)

5

10

15

+ (12,2)

old cost

added

true cost

25

Queries

�Find all the buckets within the range of
the query.

� The last bucket may be only partially within
the range.

�Cluster all clusters at all levels into k
clusters.

�Return the k centroids.

26

Error in Estimation

�Goal is to pick the k centroids that
minimize the true cost (sum of distances
from each point to its centroid).

�Since recorded “costs” are inexact, there
can be a factor of 2 error at each level.

�Additional error because some of last
bucket may not belong.

� But fraction of spurious points is small (why?).

27

Effect of Cost-Errors

1. Alter when buckets get combined.

� Not really important.

2. Produce suboptimal clustering at any
stage of the algorithm.

� The real measure of how bad the output
is.

28

Speedup of Algorithm

�As given, algorithm is slow.

� Each new bucket causes O(log N) bucket-
merger problems.

�A faster version allows the first bucket
to have not k, but N 1/2 (or in general
N 2) points.

� A number of consequences, including
slower queries, more space.

