東日本と西日本の境界線を機械学習で引いてみました. セキュリティ分野の M1 が機械学習をお勉強する際に,モチベ維持のため面白そうなテーマを選んだらこうなった!というもの. なので本体の論文とか,学術的貢献とかはないです...が,そういった視点から見ていただけるのはとても嬉しいです! 市町村単位,藩単位など,県境以外で境界線を引けないか?というコメントを多くいただいていますので,今後そういった方面への掘り下げもやっていきたいです.
今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 巷ではDeep Learningとか急に盛り上がりだして、機械学習でもいっちょやってみるかー、と分厚くて黄色い表紙の本に手をだしたもののまったく手が出ず(数式で脳みそが詰む)、そうか僕には機械学習向いてなかったんだ、と白い目で空を見上げ始めたら、ちょっとこの記事を最後まで見るといいことが書いてあるかもしれません。 対象 勉強に時間が取れない社会人プログラマ そろそろ上司やらお客様から「機械学習使えばこんなの簡単なんちゃうん?」と言われそうな人 理系で数学はやってきたつもりだが、微分とか行列とか言われても困っちゃう人 この記事で行うこと
Join AWS Hybrid Cloud & Edge Day to Learn How to Deploy Your Applications in the Everywhere Cloud In his keynote of AWS re:Invent 2021, Dr. Werner Vogels shared the insight of how “the everywhere cloud” is bringing AWS to new locales through AWS hardware and services and spotlighted it as one of his tech predictions for 2022 and beyond in his blog post. “What we will see in 2022, and even more […]
Amazonクラウドはクラウド上で機械学習を提供するサービス「Amazon Machine Learning」を発表しました。 これはAmazon社内でデータサイエンティスト達が使っているのと同じものと説明されており、既存のデータ群から適切な機械学習モデルを作りだし(データからパターンを学習し)、そのモデルを新しいデータに適用して予測などを行っていくというもの。 高いスケーラビリティで日々何十億もの予測を行う能力を備え、リアルタイムに予測を生成できるとされています。 簡単に学習させられ、大規模処理も可能 Amazon Machine Learningのページでは、特長として5つの要素が示されています。 1つ目は、既存データをAmazon S3やRedshift、Amazon RDSなどから簡単に読み込んで学習させることができること。2つ目は、数秒でモデルを作成し、予測までできること。 3つ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く