- 博客(1227)
- 收藏
- 关注
原创 Model Context Protocol (MCP):大模型与外部系统交互的核心协议详解!
简介Model Context Protocol (MCP)是一种开源标准,用于连接AI应用与外部系统。它采用客户端-服务器架构,由数据层和传输层组成,提供工具、资源、提示等核心原语。MCP交互流程包括初始化、工具发现、执行和更新。通过MCP,AI应用可以访问文件系统、数据库、API等外部资源并执行特定任务。FastMCP作为标准框架,提供简洁的Pythonic代码,帮助开发者高效构建MCP应用程序,实现大模型与外部系统的无缝集成。
2025-12-02 15:26:19
417
原创 【python】MCP Server And It‘s application
PS:This file only provides the method which sets up the Virtual Environment by UV.Thus if you want to use the following examples,you ought to download that.PS:You can open the file "UV And It's Functions.txt" or visit "https://docs.astral.sh/uv/" to learn
2025-12-02 15:13:08
291
原创 你的Prompt有1000行?别再写了!Claude模块化Agent,把代码的优雅还给AI开发!
当AI智能体从对话式助手演进为承担核心业务流程的自主角色时,其开发模式必然从“提示词技巧”转向“系统工程”。今天我将以Anthropic Claude平台为准,深度剖析其四大核心构件——Skills(技能)、Projects(项目)、Subagents(子智能体) 和 MCP(模型上下文协议)。通过详实的代码示例、配置文件和架构图,揭示如何通过模块化设计构建可复用、可扩展、安全可控的企业级AI工作流,希望能帮助到大家。一、 范式转移:从提示词工程到智能体系统工程。
2025-12-02 15:11:05
381
原创 使用GLM-4.6开发Spring Boot项目脚手架:从零到一的AI辅助开发实践
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。建立适应AI辅助开发的工程实践,保持对生成代码的质量控制,并持续优化人机协作流程,将成为现代软件开发团队的核心竞争力。本文将全面介绍如何利用GLM-4-6构建一个功能完备的Spring Boot项目脚手架,通过实际代码示例、架构设计和最佳实践,帮助您在AI辅助下快速启动高质量的企业级Java项目。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
2025-12-01 13:07:18
563
原创 工程化路径:当我们信任并拥抱 AI,超级潜力才真正被点燃
AI 的价值来自人与 AI 构成的协作系统,而这个系统的启动条件是“信任 + 拥抱”。技术角度的最终结论是:AI 不是 CPU,而是“协作结构的放大器”AI 的潜力是被使用方式激活的AI 的上限不是模型规模,而是组织给它的权限信任是权限的前提权限是智能的放大器放大器越大,“超级潜力”就越充分显现AI 的时代不是由 GPU 推动的,而是由“组织架构和心智架构”推动的。当你愿意把重要任务交给 AI,那一刻开始,你真正进入了新的时代。相关文章和讨论链接参考。
2025-12-01 11:08:08
683
原创 C#初级开发者:AI预测重构需求下的创意守护与效率革命——老码农的幽默实战录
哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!📚 本文简介本文探讨了C#初级开发者在AI时代的挑战,特别是AI分析代码库历史记录预测重构需求导致的主动性焦虑。文章分析了AI预测的工作原理,揭示了其在C#环境中的局限性,并通过代码示例和案例展示了开发者如何保持创意和主导权。作者提供了实战策略,如提升代码质量、利用AI工具辅助,以及培养业务洞察力,帮助开发者从焦虑转向高效行动。核心观点认为,AI虽能优化流程,但人类开发者的情境理解和创新思维仍是不可替代的竞争优势。目录。
2025-12-01 10:57:51
512
原创 Google NotebookLM最强替代品评测:AI笔记、语音生成与高效知识管理工具盘点
引言随着AI研发和生产力工具不断进化,Google推出的NotebookLM已成为从用户上传文档中整合信息的助手。然而,其在自定义程度、数据隐私及功能广度上的局限,促使不少用户寻找替代方案。幸运的是,目前市面上已有多种替代产品,提供从更深层AI集成到更强协作支持的独特功能。本文将深入探讨最值得关注的NotebookLM替代工具及其独到之处。阅读后,您将能够选择最适合自己使用风格的研究助手。官方网站:NousWise。
2025-12-01 10:50:38
553
原创 1分钟对接500个大模型?这才叫 AI 开发!
屑老板说:公司最近要做一个智能客服系统,小阿巴,你是新人,所以这个重任就交给你了!故天将降大任于新人也~你一听,心想:不就是调个 API 的事儿嘛,有啥难的?于是你撸起袖子就开始写代码,先接入了 OpenAI 的 GPT 模型。刚刚搞定,屑老板说:还要加上 Claude 模型,听说它在某些场景下表现更好。于是你又写了一堆调用 Claude 模型的代码。结果刚写完,屑老板又说:嗯,听过国产的通义千问也不错,也一起接入吧!你皱了皱眉,心想:又得写调用这个模型的代码了,老板你是不是有点过分了。。
2025-12-01 10:47:53
468
原创 【Coze-AI智能体平台】 吃透 Coze 智能体开发:3 大模式 + 模型配置 + 提示词技巧全攻略
在AI技术全面渗透生活与工作的今天,Coze正以「零门槛智能搭建工具」的姿态脱颖而出。它打破了传统AI应用开发的技术壁垒,无需复杂编程,通过拖拽组件、简单配置,普通人也能快速打造专属聊天机器人、智能问答工具、内容生成助手等多样化应用。无论是提升工作效率、释放创意灵感,还是解决特定场景需求,Coze都能成为高效适配的智能伙伴。本文将带大家解锁Coze的核心优势与实用价值,助力你在AI浪潮中轻松掌握高效工具,开启智能应用搭建新体验。一、智能体开发基础1.1 什么是智能体。
2025-11-30 09:39:10
781
原创 【Spring进阶】Spring IOC实现原理是什么?容器创建和对象创建的时机是什么?
BeanFactory的功能通过其它的接口得到了不断的扩展,比如AbstractAutowireCapableBeanFactory定义了将容器中的Bean按照某种规则(比如按名字匹配、按类型匹配等)进行自动装配的方法。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。ApplicationEvent 的发布与 BeanFactory 懒加载的方式不同,它是预加载,所以,每一个 bean 都在 ApplicationContext 启动之后实例化。
2025-11-27 13:28:58
683
原创 《半小时漫画计算机》读后感:从入门到构建知识体系
最近阅读了《半小时漫画计算机》一书,用轻松的方式回顾了计算机科学的基础知识。这本书从浅入深,覆盖了网络、系统、编程语言等多个层面。为了加深理解,我结合自己的知识,对书中的要点进行了梳理和扩展,形成了一份知识总结。一、 全书核心脉络梳理这本书的编排遵循了从底层到上层、从硬件到软件的认知逻辑:第一章 计算机网络:从经典的“三次握手”切入,讲解了网络通信的基础。第二章 操作系统:揭示了程序如何与硬件交互,扮演“大管家”的角色。
2025-11-27 13:22:58
868
原创 Java SE——8.继承和多态《干货笔记》
目录继承(修饰符 class 子类 extends 父类)父类成员访问查找顺序(就近原则):子类>父类>报错同名时(想明确访问父类的)——>super子类构造方法(父子父子,先有父再有子):子类成员=父类+自己新增的父类构造方法无参或默认父类构造方法有参super和this区别final继承和组合多态重写(覆盖)—>针对:子类重写父类重写与重载区别向上转型发生方式(父类引用子类对象)优缺点向下转型动态绑定(后期绑定/晚绑定)多态优缺点。
2025-11-27 13:20:15
751
原创 三面阿里,四面京东,終拿offer!Java面经分享!
面试官一开始就问了我 Java 的基本数据类型,这是最基础不过的问题了,像整数类型的 byte、short、int、long,浮点类型的 float、double,字符类型的 char 以及布尔类型的 boolean,我都对答如流。接着,面试官让我谈谈自己的职业规划。接着问到了垃圾回收机制,我提到了常见的垃圾回收算法,如标记 - 清除算法、标记 - 整理算法、复制算法等,还介绍了不同的垃圾回收器,像 Serial 回收器、Parallel 回收器、CMS 回收器和 G1 回收器,并且说明了它们的适用场景。
2025-11-27 11:10:05
356
原创 从10秒到0.1秒:Hyper-V冷启动优化的C#秘籍
这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。关键点:预加载不是"简单加载",而是"智能预加载"——只加载真正需要的驱动,避免"预加载所有"的浪费。如果你还在用10秒的冷启动,你已经落后了。
2025-11-27 11:02:08
556
原创 你的RAG为什么总在“胡说八道”?根源就在文本分块!一文让你从入门到精通,彻底根治!
1. 文本分块的原理和重要性将长文本分解成适当大小的片段,以便于嵌入、索引和存储,并提高检索的精确度。文本分块(Text Chunking)是 RAG(检索增强生成)、文档问答、向量检索等场景的核心预处理步骤,本质是将长文本拆分为大小合适、语义完整的片段,核心目的是解决「长文本与模型 / 检索系统能力不匹配」的问题,同时提升检索精度、生成质量和系统效率。1.1 如何确定大模型所能接受的最长上下文1.查官方文档,获取模型的 理论上下文长度(Token 数);
2025-11-27 10:57:23
1741
原创 LangChain1.0速通指南(三)——LangChain1.0 create_agent api 高阶功能
前言上篇分享LangChain1.0速通指南(二)——LangChain1.0 create_agent api 基础知识笔者带大家学习了 create_agent API 的基本构建要素、消息机制与流式输出等核心操作。然而,create_agent 作为 LangChain 1.0 中新一代智能体构建的标准 API,其能力远不止于此。从工具调用的精细化控制,到记忆机制的灵活运用,再到细粒度的逻辑控制,它都提供了丰富而强大的高阶功能。
2025-11-26 12:17:47
1139
原创 一文搞懂:MCP、RAG、Agent的区别与联系、落地应用案例
MCP、RAG、Agent 是 LLM 应用架构的三大核心组件,——MCP 是 “模型调度与资源管理层”,RAG 是 “知识增强层”,Agent 是 “智能决策与执行层”,三者结合可实现 “高效、准确、自主” 的 LLM 应用落地。一、三大概念核心解析1. MCP(Model Control Plane,模型控制平面)核心定义:管理 LLM 全生命周期的 “调度中枢”,负责模型选型、部署、负载均衡、版本控制、权限管理等。
2025-11-26 12:07:46
577
原创 Nano Banana:开启 AI 图像创作新体验的全能工具
在当今 AI 技术飞速发展的浪潮中,图像创作领域正经历着前所未有的变革。从早期简单的图像生成,到如今精细化、多样化的图像编辑与创作,AI 工具不断突破着人们对图像制作的认知边界。而 Google 推出的 Nano Banana,正是这一领域中极具代表性的工具之一。它凭借强大的功能、独特的特点以及便捷的使用方式,为用户带来了全新的 AI 图像创作体验,无论是专业的设计人员,还是对图像创作感兴趣的普通用户,都能借助 Nano Banana 实现自己的创意想法。
2025-11-26 11:59:30
805
原创 基于ModelEngine快速搭建AI智能体,打造你的专属旅行顾问
大家好,我是jike007gt。985院校硕士毕业,现担任算法工程师一职,获得CSDN博客之星第一名,热衷于大模型算法的研究与应用。曾担任百度千帆AI应用挑战赛、英特尔AI创新应用大赛等比赛评委,科大讯飞AI大学堂荣誉讲师,编写微软OpenAI考试认证指导手册。曾获得多项AI顶级比赛的Top名次,其中包括阿里云天池比赛第一名,科大讯飞分类挑战赛第一名。在技术创新领域拥有多项授权发明。本文详细介绍了基于ModelEngine快速搭建AI智能体,打造你的专属旅行顾问,希望能对搭建AI智能体的同学们有所帮助。
2025-11-26 11:47:18
1009
原创 【华为ICT实践赛-昇腾AI赛道】【HCIA-AI V4.0】备考笔记
人工智能概述通用定义:AI 是研究、开发用于模拟 / 延伸 / 扩展人类智能的理论、方法、技术及应用系统的交叉学科,1956 年首次提出,核心是让机器 “像人一样思考和行动”。“人工” 与 “智能” 拆解:“人工” 即人设计制造;“智能” 参考霍华德・加德纳多元智能理论,含 8 种能力:语言、逻辑、空间、肢体动觉、音乐、人际、内省、自然。AI、机器学习、深度学习的关系层级关系:AI 是研究领域→ML 是 AI 的核心实现途径→DL 是 ML 的主流分支(源于人工神经网络)。
2025-11-26 11:40:21
782
原创 Qoder 全维度解析:AI 驱动的下一代编程生产力工具
1. 产品概述:重新定义 AI 编程体验1.1 什么是 Qoder?1.2 核心价值主张1.3 产品生态矩阵2. 核心功能深度拆解2.1 AI 聊天双模式:Ask 与 Agent2.1.1 Ask 模式:智能问答助手2.1.2 Agent 模式:自主编程智能体2.2 自动环境感知2.3 工具链与命令执行2.3.1 内置工具集2.3.2 自定义工具配置(MCP)2.4 项目级代码管理2.5 智能记忆系统2.6 高级功能特性2.6.1 Rules 规则配置。
2025-11-26 11:27:02
1027
原创 全场景教育 AI 助手诞生,Web + 小程序 + 实时同步,随时随地想用就用
序章:一场 “多端协同” 的探险之旅经过前 7 期迭代,成绩预测平台已进化为 “智能教学助手”,但新的 “场景壁垒” 出现了:教师在办公室需要 Web 端批量处理数据,却只能用电脑;家长接送孩子时想查看成绩,打开电脑太麻烦;学生在家用平板学习,却同步不了学校的预测记录。这一期,我们开启 “多端协同探险”,目标是打破设备边界 —— 打造 “Web 端管理后台 + 微信小程序 + 数据实时同步” 的全场景体系,让教师、家长、学生随时随地能用,实现 “一处操作,多端同步” 的终极体验!
2025-11-25 15:23:08
581
原创 一文说清 Agentic AI:基于 LLM 的智能体进化史
目前对 Agentic AI 的定义主要来自两个视角:百科定义视角(2025 年 10 月版)Agentic AI(代理式人工智能)是人工智能领域的新兴方向,其核心特征在于能够通过自主感知、推理、规划与执行,独立完成复杂多步骤任务。相较于工作流类 AI 工具,它具备主动性、自治性和环境适应性,可脱离人类直接控制进行决策与交互。百科定义视角(2025 年 11 月版)Agentic AI。
2025-11-25 15:05:18
882
原创 Agent 设计的实践挑战与经验总结
近期关于智能体(Agent)构建的实践经验表明,这项工作的复杂度远超预期。随着实际应用场景的深入,许多看似简单的技术决策都暴露出需要权衡的地方。本文将从SDK选择、缓存策略、循环强化等多个维度,分享构建生产级智能体过程中的关键发现。
2025-11-25 14:52:07
724
原创 2025 全球 AI Agent 行业深度解读:现状、玩家与未来破局点
但需注意的是,当前行业仍处于技术探索期,尚未实现大规模商业化落地,市场规模暂未突破百亿量级,属于 "潜力大于现状" 的蓝海赛道。通过十大核心AI 能力评估,现有产品仅在部分维度展现出智能体级别能力,预计 "L3 级别" 智能体将很快实现,但 "L4 级别"(专家级)仍需突破工具库整合、跨模态能力、毫秒级响应等技术难题。:聚焦25-44 岁男性群体,特别是技术开发者、企业办公人员、专业服务从业者,这部分用户付费意愿强、技术接受度高,可通过知乎、Github、行业社群进行精准触达。
2025-11-25 14:50:02
571
原创 有人问MCP
而第三方如何被调用,就需要把自己的专业壁垒数据结合MCP技术(开源)一起做成一个可以被调用的包。-因此,掌握MCP技术没用(因为是开源的),MCP是把你的专业数据转化为“可商业化,被AI调用的推送” 的钥匙。另外摩尔要上了,国产GPU这块默默顶出个3连20,感觉这块也没怎么发酵。通用型智能体,比如openai,植入导购他是一个调用三方链接的过程。“”每家大厂做出来的通用智能体,缺的都是真正有用的调用链接...”MCP是什么:MCP Server简介,看下图。增速反正都是公开数据,自己找找,懒得贴了...
2025-11-25 14:44:21
161
原创 OpenAI与Anthropic联手力推:MCP Apps提案发布,告别纯文本交互
MCP Apps 是一个可选扩展。服务器应为所有启用 UI 的工具提供纯文本回退方案,并在 UI 不可用时返回有意义的内容,以便同时服务于支持 UI 和仅支持文本的主机。近日,MCP 社区正式提出了 MCP Apps 提案(SEP-1865),旨在填补这一关键拼图:规范对交互式用户界面(UI)的支持,使 MCP 服务器能够直接向主机提供可视化的操作界面。由 Ido Salomon 和 Liad Yosef 创建并由一个活跃的社区维护的 MCP-UI 项目 ,引领了具有交互式界面的智能体应用的愿景。
2025-11-25 14:40:35
700
原创 【AI大模型前沿】通义万相Wan2.2:阿里270亿参数巨兽开源,消费级显卡就能跑,免费平替Sora上线
目录系列篇章💥前言一、项目概述二、技术原理(一)混合专家(MoE)架构(二)扩散模型(Diffusion Model)(三)高压缩率3D VAE(四)大规模数据训练(五)美学数据标注三、主要功能(一)文生视频(Text-to-Video)(二)图生视频(Image-to-Video)(三)统一视频生成(Text-Image-to-Video)(四)电影级美学控制(五)复杂运动生成四、应用场景(一)短视频创作(二)广告与营销。
2025-11-24 13:33:57
714
原创 【AI大模型前沿】智谱GLM-4.6:355B参数的旗舰级AI模型,代码能力与推理性能全面升级
目录系列篇章💥前言一、项目概述二、核心功能(一)高级编码能力(二)超长上下文窗口(三)推理能力提升(四)搜索与智能体能力(五)写作能力优化(六)多语言翻译增强三、技术揭秘(一)架构设计(二)注意力机制(三)优化器与训练(四)上下文管理四、基准评测(一)综合评测(二)真实编程评测五、应用场景(一)编程辅助(二)智能体任务(三)内容创作(四)多语言翻译(五)教育领域(六)企业应用六、快速使用。
2025-11-24 13:21:56
780
原创 【案例分享】AI使用分享|如何运用 GPT完成小任务并提升效率 —— Prompt 与案例整理
随着生成式 AI 模型(如 ChatGPT、GPT-4、Claude、Gemini 等)的普及,越来越多的开发者、学生、职场人士开始尝试在工作与学习中引入 AI 工具。然而,很多人依旧停留在“问问问题”的层面,缺乏系统化的使用方法,导致输出结果不稳定、效率提升有限。本篇文章将结合实际案例,全面介绍如何通过设计合理的 Prompt(提示词),以及如何在不同场景下高效利用 AI 完成各种“小任务”。文章内容覆盖:Prompt 设计原则与技巧代码生成与调试场景文档整理与知识总结。
2025-11-24 13:17:45
617
原创 飞算JavaAI:革新Java开发体验的智能助手
随着人工智能技术的飞速发展,AI编程助手逐渐走进开发者的视野。飞算JavaAI是一款专注于Java语言的智能代码生成工具,它最大的特点是能够让开发者使用自然语言完成业务逻辑的描述,并一键生成完整的工程代码。随着AI技术的不断发展,我们可以预见,像飞算JavaAI这样的专业化AI开发工具将会越来越多,它们将从根本上改变软件开发的模式,让开发者能够更专注于创新和解决复杂的业务问题。这里第三步他给我了几个选择表结构的地方,第一个就是使用自己的数据库里面的表结构,第二个就是用他们的,我这里直接使用他们的试试效果。
2025-11-24 13:09:29
832
原创 “企业级AI Agent落地方案:用Bright Data快速建立消费电子舆情数据采集与智能分析“
目录前言行业痛点:为何自建爬虫在AI时代步履维艰?为什么选择Bright Data?面向AI数据采集的工程级解决方案实战演练:构建“小米17”舆情AI Agent的四步法第一步:注册与初始化第二步:选择与配置数据采集API第三步:配置采集任务第四步:AI Agent 分析与报告生成 —— 从数据洞察驱动商业决策数据如何变成决策依据?结语:不是生成报告,而是赋能决策前言在竞争白热化的消费电子市场,新品发布前后的舆情动态是决定市场成败的关键。
2025-11-24 10:35:59
1114
原创 AI Agent 之工具使用:从函数定义到实际应用
前言在 AI Agent 的发展历程中,工具使用能力无疑是其从 "聊天机器人" 跃升为 "智能助手" 的关键一步。想象一下,如果一个 AI 只能依靠其训练数据中的知识进行回答,那么它不仅会受限于知识的时效性,还会在面对需要实时计算或外部信息的问题时束手无策。本文将深入探讨 AI Agent 工具使用的核心技术,从工具的定义方法到函数调用技术的实现,再到从零构建一个具备多种工具使用能力的 ReAct Agent。
2025-11-24 10:19:56
881
原创 零基础学AI大模型之向量数据库介绍与技术选型思考
本文章目录前情摘要零基础学AI大模型之向量数据库介绍与技术选型思考一、核心疑问:为什么不能用MySQL存储向量?1. 维度灾难:高维向量索引失效2. 缺乏高效相似度计算能力3. 实时性与扩展性不足二、向量数据库的核心能力:解决什么问题?1. 核心能力拆解2. 典型应用场景三、主流向量数据库详解(含优缺点对比)3.1 开源分布式向量数据库(企业级首选)1. Milvus(米洛数据库)2. Qdrant3.2 云原生托管向量数据库(中小团队首选)
2025-11-24 10:10:40
545
原创 赋能AI解锁Coze智能体搭建核心技能(4)--- 知识库资源让你的智能体更加智能
在AI技术全面渗透生活与工作的今天,Coze正以「零门槛智能搭建工具」的姿态脱颖而出。它打破了传统AI应用开发的技术壁垒,无需复杂编程,通过拖拽组件、简单配置,普通人也能快速打造专属聊天机器人、智能问答工具、内容生成助手等多样化应用。无论是提升工作效率、释放创意灵感,还是解决特定场景需求,Coze都能成为高效适配的智能伙伴。本文将带大家解锁Coze的核心优势与实用价值,助力你在AI浪潮中轻松掌握高效工具,开启智能应用搭建新体验。一、什么是知识库。
2025-11-24 10:02:25
578
原创 掌握提问驱动AI:速通大模型提示工程
大家好,我是jike007gt。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。本文主要介绍了掌握提问驱动AI:速通大模型提示工程,希望能对学习大模型的同学们有所帮助。
2025-11-21 14:58:49
834
原创 16:00开始面试,16:06就出来了,问的问题有点变态。。。
从小厂出来,没想到在另一家公司又寄了。到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到8月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40%,这下搞的饭都吃不起了。还在有个朋友内推我去了一家互联网公司,兴冲冲见面试官,没想到一道题把我给问死了:如果模块请求http改为了https,测试方案应该如何制定,修改?感觉好简单的题,硬是没有答出来,早知道好好看看一大佬软件测试面试宝典了。通过大数据总结发现,其实软件测试岗的面试都是差不多的。
2025-11-21 14:50:19
614
原创 Java 开发三大神器:深入理解 Spring、Spring Boot 与 MyBatis-Plus
在现代 Java 企业级开发领域,Spring、Spring Boot 和 MyBatis-Plus这三个名字如雷贯耳。它们构成了绝大多数 Java 后端项目的技术骨架,被誉为 Java 开发的"三驾马车"。然而,许多开发者,尤其是初学者,常常对这三者的角色定位和相互关系感到困惑。本文将深入剖析这套"黄金组合",揭示它们如何各司其职又相辅相成,共同塑造了高效的Java 开发生态。一、基石与灵魂:Spring Framework如果把整个 Java 技术栈比作一座大厦,那么 Spring Framewor
2025-11-21 14:40:58
577
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅