Ruby - Bug #18441

Fix inconsistent parentheses with anonymous block forwarding
12/27/2021 04:31 PM - bkuhlmann (Brooke Kuhimann)

Status: Rejected
Priority: Normal
Assignee:

Target version:

ruby -v: ruby 3.1.0p0 (2021-12-25 revision Backport: 2.6: UNKNOWN, 2.7: UNKNOWN, 3.0:
fb4df44d16) [arm64-darwin21.2.0] UNKNOWN, 3.1: UNKNOWN

Description

Overview

One of the best qualities of Ruby, syntactically, is the optional use of parenthesis (or lack there of). I've enjoyed this for almost two
decades. With Ruby 3.1.0, things have become a bit more inconsistent with the introduction of anonymous block forwarding.

I'm wondering if it would be possible to allow optional parenthesis for this feature? | understand if this can't be done but having
consistent behavior would be most welcome.

Steps to Recreate

To demonstrate, consider the following code:
def demo positional, &block
other positional, &block

end

Notice parentheses are optional. If saving the above as snippet.rb and running as ruby snippet.rb, there will be syntax errors. ...but if
you modify the above implementation to use anonymous block forwarding as follows:

def demo positional, &
other positional, &
end

...and then run the above as ruby snippet.rb, you'll end up with the following syntax error:

snippet.rb:16: syntax error, unexpected local variable or method, expecting ';' or '\n'
other positional, &

In order to fix the error, you'll need to modify the implementation as follows:
def demo (positional, &)
other positional, &

end

Should you need to send multiple messages to similar methods within your implementation, you'll be forced to use parentheses
within the body as well. Example:

def demo (positional, &)
other (positional, &)
another (positional, &)

end

It seems odd that the style of code you write needs to differ based on whether you use anonymous or explicit use of block syntax.

Notes
If additional context is helpful, this behavior is similar in nature to an issue with punning as described in this issue.

Anyway, thanks and am enjoying the new Ruby 3.1.0 features! i

11/14/2025 1/3

https://bugs.ruby-lang.org/issues/18396

History

#1 - 12/27/2021 04:53 PM - jeremyevans0 (Jeremy Evans)

| don't think this is a bug. The issue with not using parentheses is that & is going to keep looking for the name for the block variable:

def a &
b
b
end

is parsed as:

def a(&b)
b
end

So your code:

def demo positional, &
other positional, &
end

is parsed as:

def demo (positional, &other positional, &)
end

Which isn't valid syntax. I'm not sure how we could keep backwards compatibility and also allow for & to work the way you want. Note that it is
already possible to have anonymous block forwarding work without parentheses, just not exactly the way you want:

def demo positional, &;
other positional, &
end

def demo positional, &;
other positional, &;
another positional, &
end

Note that anonymous block parameter parsing is consistent with anonymous rest and keyword rest parameter parsing from previous versions of
Ruby:

def a *

b, * *

c, &

d

[b, c, d]
end

a(l, b: 2){}
=> [[1], {:b=>2}, #<Proc:0x00000aa8c0582140 (irb):22>]

#2 - 12/27/2021 08:16 PM - bkuhimann (Brooke Kuhimann)

It is already possible to have anonymous block forwarding work without parentheses, just not exactly the way you want:

True, but use of semicolon is definitely not desired in this situation even though that would get me slightly closer to what | want.

Note that anonymous block parameter parsing is consistent with anonymous rest and keyword rest parameter parsing from previous versions of
Ruby

That code example tripped me up, initially, because I'm not used to reading parameters broken up across multiple lines (especially with oddly placed

newlines) but | see your point. There are times where you might have arguments span multiple lines which is also valid. Even use of a carriage return
wouldn't help so | guess there's not an easy way to parse when a method definition stops and starts or when arguments in a message start and stop

without the use parenthesis or semicolons. Alas. [I[]

Thanks for the explanation and clarification. J000ED I'l have to fall back to letting Rubocop auto-correct for me when | veer astray. | don't think | can
close this issue but feel free to do so when you have a chance.

11/14/2025 2/3

#3 - 12/27/2021 08:28 PM - jeremyevans0 (Jeremy Evans)
- Status changed from Open to Rejected

11/14/2025 3/3

http://www.tcpdf.org

