Ruby - Bug #18482

Fiber can not disable scheduler
01/12/2022 05:48 PM - jakit (Jakit Liang)

Status: Rejected
Priority: Normal
Assignee: ioquatix (Samuel Williams)

Target version:

ruby -v: ruby 3.1.0p0 (2021-12-25 revision Backport: 2.6: UNKNOWN, 2.7: UNKNOWN, 3.0:
fo4df44d16) [arm64-darwin20] UNKNOWN, 3.1: UNKNOWN

Description
class Fiber can not disable scheduler with it's parameter.

When parameter is false:

require 'fiber'
require 'io/nonblock'

class SimpleScheduler

def initialize
@readable = {}
Qwritable = {}
@waiting = {}
@ready = []
@blocking = 0
@urgent = IO.pipe

end

def run
while @readable.any? or @writable.any? or @waiting.any? or @blocking.positive? or (@ready.any?
readable, writable = IO.select (@readable.keys + [@urgent.first], @Qwritable.keys, [], 0)

readable&.each do |io]
if fiber = (@readable.delete(io)
fiber.resume
end
end

writable&.each do |io|
if fiber = @writable.delete(io)
fiber.resume
end
end

@waiting.keys.each do |fiber|
if current_time > @waiting[fiber]
@waiting.delete (fiber)
fiber.resume
end
end

ready, @ready = @Qready, []
ready.each do |fiber|
fiber.resume
end
end
end

def io_wait (io, events, timeout)
unless (events & IO::READABLE) .zero?
@readable[io] = Fiber.current
end

11/14/2025 1/6

unless (events & IO::WRITABLE) .zero?
@writable[io] = Fiber.current
end

Fiber.yield
return events
end

def kernel_sleep(duration = nil)
block(:sleep, duration)
return true

end

def block(blocker, timeout = nil)
if timeout
@waiting[Fiber.current] = current_time + timeout
begin
Fiber.yield
ensure
@waiting.delete (Fiber.current)
end
else
@blocking += 1
begin
Fiber.yield
ensure
@blocking -= 1
end
end
end

def unblock (blocker, fiber)
@ready << fiber

io = @urgent.last
io.write_nonblock ('.")
end

def close
run
@Qurgent.each(&:close)
@urgent = nil

end

private
def current_time
Process.clock_gettime (Process: :CLOCK_MONOTONIC)
end
end

scheduler = SimpleScheduler.new
Fiber.set_scheduler (scheduler)

puts "Go to sleep!"

f = Fiber.new(false) do
puts "Going to sleep"

sleep (1)
puts "I slept well"
end

f.resume

puts "Wakey-wakey, sleepyhead"

Result:

Go to sleep!

11/14/2025 2/6

Going to sleep
Wakey-wakey, sleepyhead
I slept well

And when parameter is true:

require 'fiber'
require 'io/nonblock'

class SimpleScheduler

def initialize
@readable = {}
Qwritable = {}
@waiting = {}
@ready = []
@blocking = 0
@urgent = IO.pipe

end

def run
while @readable.any? or @writable.any? or @waiting.any? or @blocking.positive? or @ready.any?
readable, writable = IO.select (@readable.keys + [@urgent.first], @writable.keys, [], 0)

readable&.each do |io]|
if fiber = (@Qreadable.delete(io)
fiber.resume
end
end

writable&.each do |io]
if fiber = @writable.delete(io)
fiber.resume
end
end

@waiting.keys.each do |fiber|
if current_time > Qwaiting[fiber]
@waiting.delete (fiber)
fiber.resume
end
end

ready, @ready = Qready, []
ready.each do |fiber|
fiber.resume
end
end
end

def io_wait (io, events, timeout)
unless (events & IO::READABLE) .zero?

@readable[io] = Fiber.current

end

unless (events & I0::WRITABLE) .zero?
@writable[io] = Fiber.current

end

Fiber.yield
return events
end

def kernel_sleep(duration = nil)
block (:sleep, duration)
return true

end

def block(blocker, timeout = nil)

11/14/2025 3/6

if timeout
@waiting[Fiber.current] = current_time + timeout
begin
Fiber.yield
ensure
@waiting.delete (Fiber.current)
end
else
@blocking += 1
begin
Fiber.yield
ensure
@blocking -= 1
end
end
end

def unblock (blocker, fiber)
@ready << fiber
io = @urgent.last
io.write_nonblock ('.")
end

def close
run
@urgent.each (&:close)
@urgent = nil

end

private
def current_time
Process.clock_gettime (Process: :CLOCK_MONOTONIC)
end
end

scheduler = SimpleScheduler.new
Fiber.set_scheduler (scheduler)

puts "Go to sleep!"

f = Fiber.new(true) do
puts "Going to sleep"
sleep (1)
puts "I slept well"

end

f.resume

puts "Wakey-wakey, sleepyhead"

Result (was still the same):

Go to sleep!

Going to sleep

Wakey-wakey, sleepyhead

I slept well

While make the set_scheduler line commented:

scheduler = SimpleScheduler.new
Fiber.set_scheduler (scheduler) // Here is commented

puts "Go to sleep!"
f = Fiber.new(false) do

puts "Going to sleep"
sleep (1)

11/14/2025 4/6

puts "I slept well"
end

Result is right:

Go to sleep!

Going to sleep

I slept well

Wakey-wakey, sleepyhead

Maybe in some situation.

I wrote my gem without Scheduler. But user defined its Scheduler for his or her logic code.

It will break the sequence of Fiber which was needed for my gem.

Also, using Fiber in the Enumerator situation will be broke down too:

db.with_each_row_of_result (sgl_stmt) do |row]
yield row

end

[[https://blog.appsignal.com/2018/11/27/ruby-magic-fibers-and-enumerators-in-ruby.html]]

It will break the sequence of db rows when doing enum such like python's generator.

Also, another question is that | saw something was talk in:

https://bugs.ruby-lang.org/issues/16786

| think there would be a better way to improve this.
You can see, in c++, std::thread is easy to create and join a new thread.
If someone make a std::thread::scheduler into STL of C++.
And let user to implement its std::thread::handler to implement the virtual methods (interface or callback) to use it.
And std::thread::scheduler holds an independent thread pool which is not separated.
What do you think about this std::thread::scheduler?
What about make a golang's GMP into std::thread or std::coroutine.
Why not STL do that?
Why not STL let std::ithread become a self-scheduled module?
Otherwise, the sense of implement Scheduler as async await may be a good idea, but there has module named Ractor can solve it.
Maybe:
IO0.async do |readable, writeble]

if readable

code

end
end

In other programming language, like Python.
Python never let it's Generator mixed with async 1O but add async syntax:

async def coro(): # a coroutine function

11/14/2025 5/6

https://bugs.ruby-lang.org/issues/16786

await smth ()

async def asyncgen(): # an asynchronous generator function
await smth ()
yield 42

Python goes in a right way. Methods can run async and something like 10.write() can put in it.

async def async_write (data): # a coroutine function
IO.write (data)

async def send(message): # an asynchronous generator function
await async_write("hello " + message)
yield 1

https://www.python.org/dev/peps/pep-0525/#id10

Also, JavaScript use async syntax to identify the async procedure.
Above that, | think the Fiber.scheduler may not be a good idea. Because Ractor is here.

Ractor can run methods async and we can put IO.write in it and make it "async".

History

#1 - 01/12/2022 05:48 PM - jakit (Jakit Liang)
- ruby -vsetto 3.1.0

#2 - 01/12/2022 05:48 PM - jakit (Jakit Liang)
- ruby -v changed from 3.1.0 to ruby 3.1.0p0 (2021-12-25 revision fb4df44d16) [arm64-darwin20]

#3 - 01/12/2022 05:52 PM - jakit (Jakit Liang)

- Description updated

#4 - 01/12/2022 05:53 PM - mame (Yusuke Endoh)

- Assignee set to ioquatix (Samuel Williams)

#5 - 01/12/2022 06:01 PM - jakit (Jakit Liang)

- Description updated

#6 - 01/12/2022 06:06 PM - jakit (Jakit Liang)

- Description updated

#7 - 01/12/2022 07:32 PM - jakit (Jakit Liang)

- Description updated

#8 - 01/12/2022 07:37 PM - jakit (Jakit Liang)

- Description updated

#9 - 01/12/2022 08:56 PM - ioquatix (Samuel Williams)
- Status changed from Open to Rejected

Did you read the documentation?

https://rubyapi.org/3.1/o/fiber#method-c-new

11/14/2025

6/6

https://www.python.org/dev/peps/pep-0525/#id10
https://rubyapi.org/3.1/o/fiber#method-c-new
http://www.tcpdf.org

