
Ruby - Bug #4307

include fails after undef_method

01/24/2011 04:14 AM - adrianomitre (Adriano Mitre)

Status: Rejected

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version: 1.9.2

ruby -v: ruby 1.9.2p136 (2010-12-25 revision

30365) [x86_64-linux]

Backport:

Description

=begin

After using #undef_method on a method "inherited" from a mixin, reincluding the mixin should redefine it, but that is not what

happens.

Please take a look at this short IRB transcript (source attached):

module Foo; def foo; 42; end; end

=> nil

Array.class_eval { include Foo }

=> Array

[1].foo

=> 42

Array.class_eval { Foo.instance_methods.each {|m| self.class_eval { undef_method m } } }

=> [:foo]

[1].foo

NoMethodError: undefined method foo' for [1]:Array from (irb):5 from

/home/adriano/.rvm/rubies/ruby-1.9.2-p136/bin/irb:16:in '

Array.class_eval { include Foo }

=> Array

[1].foo

NoMethodError: undefined method foo' for [1]:Array from (irb):7 from

/home/adriano/.rvm/rubies/ruby-1.9.2-p136/bin/irb:16:in '

The last command should just return 42, instead of raising a NoMethodError exception.

Note that this also applies to the following Ruby implementations:

ruby 1.8.7 (2010-12-23 patchlevel 330) [x86_64-linux]

rbx-1.2.0-20101221 []

jruby-1.5.6 [amd64-java

Thus, it may be a language specification gap, not just an implementation bug.

=end

History

#1 - 01/24/2011 05:10 AM - lsegal (Loren Segal)

=begin

On 1/23/2011 2:14 PM, Adriano Mitre wrote:

After using #undef_method on a method "inherited" from a mixin, reincluding the mixin should redefine it, but that is not what happens.

 This seems like expected behaviour to me.

Calling #undef_method inside a class marks that method as uncallable in

the class itself. Module inclusion only affects method lookup through

the inheritance tree, it doesn't actually copy methods onto the class.

Therefore, your Array class is saying: "I will no longer accept method

11/12/2025 1/2

calls to 'foo'". Reincluding (or including another module) does not

change the fact that Array is still blocking any calls to 'foo', it only

changes the inheritance tree. This is actually well documented:

http://rubydoc.info/stdlib/core/1.9.2/Module:undef_method

The only way to remove this "undef" is to define the method directly on

the class, not through an included module. You can also look at

remove_method (documented in above link) which will continue to look

for a method in the inheritance tree even if removed directly on the

class. Note that this would require the original method to be defined on

the class itself, not through inclusion (which is not how your example

works).

The other issue with your example is that re-including an already

included module is effectively a noop:

 module Foo

 def foo; 42 end

 end

 class MyClass

 include Foo; p ancestors

 include Foo; p ancestors

 end

 # => [MyClass, Foo, Object, Kernel]

 # => [MyClass, Foo, Object, Kernel]

 =end

#2 - 01/24/2011 08:02 AM - adrianomitre (Adriano Mitre)

=begin

So it was a misunderstanding of #undef_method that led me to not expect the

actual behaviour. Thanks for the clarification.

I read the documentation and understood the difference between undef_method and

remove_method, but I was unable to see how the latter could be any more useful

than the former in the case in point.

How then I could achieve the desired effects, i.e., include, exclude and then

re-include a mixin? If possible, I would like to dynamically change the

ancestors tree. (The only alternative I can think of would involve extracting

method objects and create methods to dynamically bind them, which seems a bit

awkward even considering this is a fairly atypical scenario.)

=end

#3 - 06/26/2011 05:11 PM - naruse (Yui NARUSE)

- Status changed from Open to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

#4 - 04/10/2012 06:47 PM - matz (Yukihiro Matsumoto)

- Status changed from Assigned to Rejected

lsegal's comment is right. undef_methods defies the definition of upper classes, include mixed modules.

So, this is expected behavior.

Matz.

Files

issue.rb 214 Bytes 01/24/2011 adrianomitre (Adriano Mitre)

Powered by TCPDF (www.tcpdf.org)

11/12/2025 2/2

http://rubydoc.info/stdlib/core/1.9.2/Module:undef_method
http://www.tcpdf.org

