Ruby - Bug #4537

Incorrectly creating private method via attr_accessor

03/29/2011 08:04 PM - ryanlecompte (Ryan LeCompte)

Status: Closed
Priority: Normal
Assignee: ko1 (Koichi Sasada)

Target version:

ruby -v: ruby 2.3.1p112 (2016-04-26 revision
54768) [x86_64-darwini15]

Backport:

2.1: UNKNOWN, 2.2: UNKNOWN, 2.3:
UNKNOWN

Description
The following fails with a failure to call "x=" private method

String.send(:attr_accessor, :x)

— nn
s =

s.x = 100
The following works:

class String
self.send(:attr_accessor, :X)
end

— nn

s.x = 100

Associated revisions

Revision ef45a57801a2ae8621b0cde59f11159f89f0a8dc - 08/01/2019 03:52 PM - jeremyevans (Jeremy Evans)

Make attr* methods define public methods if self in caller is not same as receiver

Previously, attr* methods could be private even if not in the
private section of a class/module block.

This uses the same approach that ruby started using for define_method

in 1fc33199736f316dd71d0c551edbf514528ddde6.

Fixes [Bug #4537]

Revision ef45a57801a2ae8621b0cde59f11159f89f0a8dc - 08/01/2019 03:52 PM - jeremyevans (Jeremy Evans)

Make attr* methods define public methods if self in caller is not same as receiver

Previously, attr* methods could be private even if not in the
private section of a class/module block.

This uses the same approach that ruby started using for define_method

in 1fc33199736f316dd71d0c551edbf514528ddde6.

Fixes [Bug #4537]

Revision ef45a578 - 08/01/2019 03:52 PM - jeremyevans (Jeremy Evans)

Make attr* methods define public methods if self in caller is not same as receiver

Previously, attr* methods could be private even if not in the
private section of a class/module block.

This uses the same approach that ruby started using for define_method

in 1fc33199736f316dd71d0c551edbf514528ddde6.

Fixes [Bug #4537]

History

#1 - 03/29/2011 08:06 PM - ryanlecompte (Ryan LeCompte)

The following fails with a failure to call "x=" private method

11/12/2025

1/4

String.send(:attr_accessor, :x)
s = "n
s.x = 100

The following works:

class String
self.send(:attr_accessor, :X)

end

s = nn

s.x = 100

#2 - 06/26/2011 06:45 PM - naruse (Yui NARUSE)
- Status changed from Open to Assigned

- Assignee set to ko1 (Koichi Sasada)

#3 - 06/26/2011 06:59 PM - ko1 (Koichi Sasada)
- Category set to core

- Target version set to 2.0.0

Behavior: It inherits current visibility (visibility of top-level is "private"). 1.8 also causes an exception. It seems to be a spec.
However, the following code:

::String.send(:define_method, :x=){|v]}
s = '!
s.x = 100

doesn't cause an exception. It seems to be an inconsistency.
The following code doesn't cause an exception on 1.9 and 1.8:

class C

private

::String.send(:define_method, :x=){|v]}
end

s.x = 100

However, the following code causes an exception only on 1.8:

class C
private
define_method (:x=) {|v]}
end
C.new.x = 10

| can't understand how should it be.
Possible solutions:
(1) Remain it as spec.

(2) All "attr_*" methods define all methods in public.
(3) others?

#4 - 11/26/2012 09:19 AM - ko1 (Koichi Sasada)

- Target version changed from 2.0.0 to 2.6

No discussion.

#5 - 08/23/2016 10:50 PM - bughit (bug hit)

why should top level visibility (which applies to methods defined in the Object class) have any effect on other classes?

this also applies to any other module which you might be in

class Classl
end

module SomeUnrelatedModule

11/12/2025 2/4

Classl.send(:attr_accessor, :public_attr)
private
Classl.send(:attr_accessor, :private_attr)
end
cl = Classl.new
cl.public_attr
cl.private_attr

what does visibility in SomeUnrelatedModule have to do with methods defined in Class1?

methods defined on a given target module when the default definee at the point of definition is not the target module, should be public, since that's the
default visibility

Classl.send(:define_method, :foo) {}
defines a public method
Classl.send(:attr_accessor, :foo)
should too

#6 - 08/23/2016 11:10 PM - bughit (bug hit)

define_method used to have the same (or similar) problem
https://bugs.ruby-lang.org/issues/9005

which was fixed, so why shouldn't this be?

#7 - 08/29/2016 04:29 PM - bughit (bug hit)
- Assignee changed from ko1 (Koichi Sasada) to nobu (Nobuyoshi Nakada)

@nobu (Nobuyoshi Nakada) shouldn't this get the same treatment as #9005

#8 - 10/11/2016 08:39 AM - shyouhei (Shyouhei Urabe)
- Status changed from Assigned to Closed

- ruby -v changed from ruby 1.9.2p180 (2011-02-18 revision 30907) [x86_64-darwin10.7.0] to ruby 2.3.1p112 (2016-04-26 revision 54768)
[x86_64-darwin15]

#9 - 10/11/2016 08:40 AM - shyouhei (Shyouhei Urabe)
- Status changed from Closed to Assigned

- Assignee changed from nobu (Nobuyoshi Nakada) to ko1 (Koichi Sasada)

#10 - 10/11/2016 11:11 AM - shyouhei (Shyouhei Urabe)

Just FYI we looked at it in developer meeting today and agreed this is a bug that have yet to be fixed.

#11 - 01/31/2017 09:04 AM - ko1 (Koichi Sasada)

- Description updated

#12 - 01/31/2017 09:10 AM - ko1 (Koichi Sasada)

So we should choose

(2) All "attr_*" methods define all methods in public.

(on #3), right?

#13 - 08/01/2019 12:16 AM - jeremyevans0 (Jeremy Evans)
- File attr-visibility-4537.patch added

Attached is a patch that makes attr* methods handle visibility the same as define_method, using the approach nobu developed for #9005. | think this
behavior makes the most sense. Always defining attr* methods as public (approach (2)) breaks backwards compatibility in more cases, and could
lead to security issues in cases where public methods are treated differently than private methods in regards to how user input is handled.

#14 - 08/01/2019 08:21 AM - nobu (Nobuyoshi Nakada)

11/12/2025 3/4

https://bugs.ruby-lang.org/issues/9005
https://bugs.ruby-lang.org/users/4
https://bugs.ruby-lang.org/issues/9005
https://bugs.ruby-lang.org/issues/9005

- Description updated

Seems fine.
BTW, it doesn't need to be the global String.

diff --git a/test/ruby/test_module.rb b/test/ruby/test_module.rb
index cdc084c8bc..9e57692cal 100644
-—-— a/test/ruby/test_module.rb
+++ b/test/ruby/test_module.rb
@@ -706,13 +706,16 Q@
end

def test_attr_public_at_toplevel
= eval (<<-END, TOPLEVEL_BINDING)
= String.send(:attr_accessor, :x)
N String.send(:attr, :y)
= String.send(:attr_reader, :z)
= String.send(:attr_writer, :w)

+ s = Object.new

+ TOPLEVEL_BINDING.eval (<<-END) .call (s.singleton_class)
+ proc do |c|

i c.send(:attr_accessor, :x)

+ c.send(:attr, :y)

+ c.send(:attr_reader, :z)

+ c.send(:attr_writer, :w)

+ end

END
= s = "v

assert_nil s.x

s.x =1

assert_equal 1, s.x
@@ -727,10 +730,6 @@

s.w = 4
assert_equal 4, s.instance_variable_get (:@w)
- ensure
= [:x, :x=, :y, :z, :w=].each do |meth]
= String.undef_method (meth) rescue nil
= end
end

def test_const_get_evaled

#15 - 08/01/2019 03:55 PM - jeremyevans (Jeremy Evans)

- Status changed from Assigned to Closed

Applied in changeset git|ef45a57801a2 21 11159f89ff .

Make attr* methods define public methods if self in caller is not same as receiver

Previously, attr* methods could be private even if not in the
private section of a class/module block.

This uses the same approach that ruby started using for define_method
in 1fc33199736f316dd71d0c551edbf514528ddde6.

Fixes [Bug #4537]

Files

attr-visibility-4537.patch 2.75 KB 08/01/2019

11/12/2025

jeremyevans0 (Jeremy Evans)

/4

https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/ef45a57801a2ae8621b0cde59f11159f89f0a8dc
https://bugs.ruby-lang.org/issues/4537
http://www.tcpdf.org

