Ruby - Feature #5553

A method for Hash that works differently depending on whether a key exists
11/03/2011 03:41 AM - sawa (Tsuyoshi Sawada)

Status: Rejected
Priority: Normal
Assignee:

Target version:

Description
A method Hash#if_key(key, [default], &pr) which works like the following will be often used, and is useful.

a = {morning: "0000", daytime: "00000", evening: "ODOOOO0", nothing: nil}
a.if_key (:morning) {|str| "#{str}00!"} #=> "000000!"

a.if_key (:nothing) {|str| "#{str}l0!"} #=> "00!"

a.if_key (:midnight) {|str| "#{str}ll0!"} #=> nil

a.if_key (:nothing, "OO0O") {|str| "#{str}l00!"} #=> "000"

That is, when key' exists, then the corresponding value will be passed to pr'. Otherwise, the given “default' or the implicit default will
be returned.

History

#1 - 11/03/2011 07:22 AM - alexeymuranov (Alexey Muranov)

In your example, the :nothing key exists, so shouldn't it be
a.if_key(:nothing, "000"){|str| "#{str}001"} #=> "001 2

Why would the code with this method be better than the following one:

if a.has_key?(key)

block here

else

default value or another block here

end

or (a.has_key?(key) ? simple operation : default)

This seems easier to read.

If you plan to always use it with the same block, maybe it should be made into a separate class with an appropriate method?

#2 - 11/03/2011 05:43 PM - sawa (Tsuyoshi Sawada)

The whole point of this suggestion is that | feel some redundancy to have to call the method fetch or [] on the hash after checking that the key exists
using key?. With this proposed method, the method call fetch or [] is unnecessary, and you can just refer to a block variable.

#3 - 11/03/2011 07:48 PM - matz (Yukihiro Matsumoto)
- Status changed from Open to Feedback

UtetchO0000000000000000000000000000000000000# keyODOOOODODODODODODODOOOODODODODODODODODODDODODODODODOD
000000oDoDoononoDoDODODoDo000DnODODoDODaDaD00D0D0DoDaDaD

#4 - 11/03/2011 08:44 PM - alexeymuranov (Alexey Muranov)

| see. But then you may also want to pass a second procedure which is run if the key does not exist, and to have both the key and the value passed
to the procedures, that is to introduce a method of the form #fetch_and_use(key, proc_if_key_found, proc_if_not). | am afraid that optimizing like this
for all possible use cases may require introducing many new methods.

On the other hand, if you want to use a hash in this way with same procedures multiple times, then what about adding a method
Hash#on_found_proc= analogous to Hash#default_proc= to be able to do like this:

11/13/2025 1/2

a = {morning: "0000", daytime: "00000", evening: "00000", nothing: nil}
a.default = "000"

a.on_found_proc = proc do |hash,key,value|

"#{value}l0

end

a[:morning] # => -0ooooe

a[:night] # => 000"

Update 4/11/2011. If the goal is to simply avoid searching for the key twice, then there is Hash#assoc:

key_if_exists, value = h.assoc(key)
if key_if_exists.nil?

puts "Bad key"

else

puts "The value is #{value}"

end

However, if you use nil as a key, then this will not work. It is still possible to do

if pair = h.assoc(key)

puts "The value is #{pair[1]}"
else

puts "Bad key"

end

Or to introduce Hash#paranoiac_fetch :) :

key_exists, value = h.paranoiac_fetch(key)
if key_exists

puts "The value is #{value}"

else

puts "Bad key"

end

As to the original proposal, maybe defining some kind of a lazy Hash#map_values(&block) would be a better? (Or Hash#on_found_proc=(&block),
that would behave identically.)
| saw #4890, but there it is exclusively about Enumerable.

#5 - 11/20/2012 08:58 PM - mame (Yusuke Endoh)
- Status changed from Feedback to Rejected

No feedback, looks hopeless to me. Closing.

Yusuke Endoh mame@tsg.ne.jp

11/13/2025 22

https://bugs.ruby-lang.org/issues/4890
mailto:mame@tsg.ne.jp
http://www.tcpdf.org

