Eight Things to Know about Large Language Models
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Abstract

The widespread public deployment of large lan-
guage models (LLMs) in recent months has
prompted a wave of new attention and engage-
ment from advocates, policymakers, and scholars
from many fields. This attention is a timely re-
sponse to the many urgent questions that this tech-
nology raises, but it can sometimes miss important
considerations. This paper surveys the evidence
for eight potentially surprising such points:

1. LLMs predictably get more capable with in-
creasing investment, even without targeted
innovation.

2. Many important LLM behaviors emerge un-
predictably as a byproduct of increasing in-
vestment.

3. LLMs often appear to learn and use repre-
sentations of the outside world.

4. There are no reliable techniques for steering
the behavior of LLMs.

5. Experts are not yet able to interpret the inner
workings of LLMs.

6. Human performance on a task isn’t an upper
bound on LLM performance.

7. LLMs need not express the values of their
creators nor the values encoded in web text.

8. Brief interactions with LLMs are often mis-
leading.

Introduction

Large language models (LLMs, e.g. GPT-3, PALM,
LLaMA, and GPT-4; Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023; OpenAl, 2023b) and products
built on them, such as ChatGPT, have recently prompted
an enormous amount of attention from journalists, (Klein,
2023; Perrigo, 2023; Oliver, 2023), policymakers (J & C,
2023; Bartz, 2023; Lieu, 2023), and scholars from many
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fields (Chan, 2022; Lund & Wang, 2023; Choi et al., 2023;
Biswas, 2023). This technology defies expectations in many
ways, though, and it can be easy for brief discussions of it
to leave out important points.

This paper presents eight potentially surprising claims that
I expect will be salient in at least some of the conversa-
tions that are springing up around LLMs. They reflect, to
the best of my understanding, views that are reasonably
widely shared among the researchers—Ilargely based in pri-
vate labs—who have been developing these models. All the
evidence I present here, as well as most of the arguments,
are collected from prior work, and I encourage anyone who
finds these claims useful to consult (and directly cite) the
sources named here.

I do not mean for these claims to be normative in any signif-
icant way. Rather, this work is motivated by the recognition
that deciding what we should do in light of this disruptive
new technology is a question that is best led—in an informed
way—by scholars, advocates, and lawmakers from outside
the core technical R&D community.

1. LLMs predictably get more capable with
increasing investment, even without
targeted innovation

Scaling law results (Kaplan et al., 2020; Brown et al., 2020;
Hoffmann et al., 2022) have been a major driving factor
in the recent surge of research and investment into LLMs
(Ganguli et al., 2022a). Scaling laws allow us to precisely
predict some coarse-but-useful measures of how capable
future models will be as we scale them up along three dimen-
sions: the amount of data they are fed, their size (measured
in parameters), and the amount of computation used to train
them (measured in FLOPs). These results thereby allow
us to make some key design decisions, such as the optimal
size of a model given some fixed resource budget, without
extremely expensive trial and error.

Our ability to make this kind of precise prediction is un-
usual in the history of software and unusual even in the
history of modern Al research. It is also a powerful tool for
driving investment since it allows R&D teams to propose
model-training projects costing many millions of dollars,
with reasonable confidence that these projects will succeed



Eight Things to Know about Large Language Models

OpenAl codebase next word prediction

Bits per word
6.0

® e Observed

Prediction
5.0 gpt-4
(]
4.0
°
3.0 °
°
°
°

2.0 °. o
1.0 7 T T T T T 1

100p 10n 1y 100y 0.01 1

Compute

Figure 1. Excerpted from OpenAl (2023b): A scaling law result for one measure of language model performance, showing a consistent
trend as the amount of computation used to train a model is scaled up 10,000,000,000x times from a small prototype system to GPT-4.

at producing economically valuable systems.

Concretely, consider these three superficially very differ-
ent systems: OpenAl’s original GPT can perform simple
text-labeling tasks but cannot generally produce coherent
text (Radford et al., 2018). GPT-2 adds the ability to pro-
duce text of reasonably high quality, as well as a limited
ability to follow simple instructions (Radford et al., 2019).
GPT-3 is the first modern general-purpose LLM, and is prac-
tically useful across a wide range of language tasks. The
designs of these three models hardly differ at all. Instead,
the qualitative differences between them stem from vast
differences in scale: Training GPT-3 used roughly 20,000 x
more computation than training the original GPT (Sevilla
et al., 2022), as well as significantly more data and parame-
ters. There are substantial innovations that distinguish these
three models, but they are almost entirely restricted to in-
frastructural innovations in high-performance computing
rather than model-design work that is specific to language
technology.

While the techniques used to train the newest LLMs are no
longer generally disclosed, the most recent detailed reports
suggest that there have been only slight deviations from
this trend, and that designs of these systems are still largely
unchanged (Chowdhery et al., 2022; Hoffmann et al., 2022;
Touvron et al., 2023).

Continuing to scale these techniques up beyond GPT-3 has
produced further economically valuable returns: The subse-
quent GPT-4 model outperforms qualified humans on many
graduate and professional exams (OpenAl, 2023b), and its
development helped prompt a multi-billion-dollar invest-
ment in the company that built it (Capoot, 2023). Scaling

laws allowed the creators of GPT-4 to cheaply and accu-
rately predict a key overall measure of its performance:
This forecast was made by fitting a statistical trend in the
performance of small models, which collectively took about
0.1% of the resources needed by the final model, and then
extrapolating out that trend (see Figure 1).

2. Specific important behaviors in LLM tend
to emerge unpredictably as a byproduct of
increasing investment

Scaling laws generally only predict a model’s pretraining
test loss, which measures the model’s ability to correctly
predict how an incomplete piece of text will be continued.!
While this measure is correlated with how useful a model
will be on average across many practical tasks (Radford
et al., 2019), it is largely not possible to predict when mod-
els will start to show specific skills or become capable of
specific tasks (see Figure 2; Steinhardt, 2021; Ganguli et al.,
2022a; Wei et al., 2022a). Often, a model can fail at some
task consistently, but a new model trained in the same way
at five or ten times the scale will do well at that task.

"Much of the data and computer time that goes into building a
modern LLM is used in an expensive initial pretraining process.
Language-model pretraining intuitively resembles the autocom-
plete task: In it, an artificial neural network model takes in a text
one word at a time, makes a probabilistic prediction about which
word will come next, and has its behavior incrementally adjusted
to make it assign a greater probability to the actual next word in
similar contexts in the future. Pretraining test loss measures how
effectively an LLM has learned to make these predictions.
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Figure 2. Excerpted from Wei et al. (2022a): Evaluations of performance on specific tasks or behaviors in LLMs do not generally show
predictable trends, and it is common for new behaviors to emerge abruptly when transitioning from a less resource-intensive version of a

model to a more resource-intensive one.

Wei et al. show that the tasks in BIG-Bench (Srivastava et al.,
2022), a standard broad-coverage benchmark for LLM abili-
ties, show a range of different kinds of trend that collectively
make scaling-law style predictions unreliable (Figure 3).
This means that when a lab invests in training a new LLM
that advances the scale frontier, they’re buying a mystery
box: They’re justifiably confident that they’ll get a variety of
economically valuable new capabilities, but they can make
few confident predictions about what those capabilities will
be or what preparations they’ll need to make to be able to
deploy them responsibly.

Concretely, two of the key behaviors in GPT-3 that set it
apart as the first modern LLM are that it shows few-shot
learning, the ability to learn a new task from a handful
of examples in a single interaction, and chain-of-thought
reasoning, the ability to write out its reasoning on hard
tasks when requested, as a student might do on a math
test, and to show better performance as a result. GPT-3’s
capacity for few-shot learning on practical tasks appears
to have been discovered only after it was trained, and its
capacity for chain-of-thought reasoning was discovered only
several months after it was broadly deployed to the public
(Nye et al., 2021; Wei et al., 2022b; Kojima et al., 2022;
Zhou et al., 2023).2 In addition, model abilities involving
programming, arithmetic, defusing misconceptions, and
answering exam questions in many domains show abrupt

2See Branwen (n.d.) for a survey that includes additional un-
published reports of this behavior.

improvements as models are scaled up (Wei et al., 2022a;
Srivastava et al., 2022).

There are few widely agreed-upon limits to what capabil-
ities could emerge in future LLMs. While there are some
hard constraints on the behaviors of typical current LLMs—
stemming from limits on the amount of text they can use
as input at any one time, limits on their ability to interact
with the world during training, or limits on the amount of
computation they can perform for each word they generate—
it is arguably plausible that these will be overcome with
further research within the same technical paradigm. How-
ever, many experts disagree: 51% of language-technology
researchers surveyed in spring 2022 agreed that “expert-
designed strong inductive biases (a la universal grammar,
symbolic systems, or cognitively-inspired computational
primitives) will be necessary to practically solve some im-
portant real-world problems or applications in [language
technology]”, which if true would represent a limit to the
LLM paradigm (Michael et al., 2022).

Expert forecasts, however, have often predicted that we
would see less progress with LLMs than has actually oc-
curred. While forecasts by technology researchers are of-
ten informal, and I am aware of no precise evaluation of
their accuracy, we do have a crisp example of experienced
professional forecasters making similar mistakes: Stein-
hardt (2022) presents results from a competition that was
organized in summer 2021, which gave forecasters access
to experts, extensive evidence, and a cash incentive, and
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Figure 3. Adapted from a figure by Jason Wei based on data from Wei et al. (2022a): The 202 tasks evaluated in the language-technology
benchmark BIG-Bench (Srivastava et al., 2022) tend to show improved performance with scale overall, but individually they can improve
gradually, improve abruptly, stay level, get worse, or vacillate, making it impossible to extrapolate the performance of some future system

confidently.

asked them to predict what state-of-the-art performance
with LLMs would be in each of the next four years on two
specific tasks. The results from summer 2022, only one
year into the competition, substantially exceeded what the
consensus forecast said would be possible in 2024. Results
with GPT-4 in early 2023 exceeded the consensus forecast
for 2025 on the one measure for which we have reported
results (OpenAl, 2023b). This suggests that it is worth plan-
ning for the possibility that we continue to see fast technical
progress.

3. LLMs often appear to learn and use
representations of the outside world

There is increasingly substantial evidence that LLMs de-
velop internal representations of the world to some extent,
and that these representations allow them to reason at a level
of abstraction that is not sensitive to the precise linguis-
tic form of the text that they are reasoning about. Current
LLMs seem to do this only weakly and sporadically, but
the evidence for this phenomenon is clearest in the largest
and most recent models, such that we should expect it to
become more robust as systems are scaled up further.

Evidence for this claim includes the following results, span-
ning many established experimental methods and models:

* Models’ internal representations of color words closely
mirror objective facts about human color perception
(Abdou et al., 2021; Patel & Pavlick, 2022; Sggaard,
2023).

¢ Models can make inferences about what the author of a
document knows or believes and use these inferences to
predict how the document will be continued (Andreas,
2022).

JA 4

Figure 4. Excerpted from Bubeck et al. (2023): An popular in-
formal (and potentially cherry-picked) demonstration of LLMs’
ability to manipulate visual representations. Here, a private ver-
sion of GPT-4, trained without any access to visual information, is
asked to write instructions in a graphics programming language
to draw a unicorn. During the model’s training (left to right), the
resulting drawings appear to become more competent.

* Models use internal representations of the properties
and locations of objects described in stories, which
evolve as more information about these objects is re-
vealed (Li et al., 2021). This can include the ability to
internally represent the spatial layout of the setting of
a story (Patel & Pavlick, 2022; Bubeck et al., 2023).
Models also use similar representations for facts about
real-world geography (Liétard et al., 2021).

* Models can at least sometimes give instructions de-
scribing how to draw novel objects (Figure 4; Bubeck
et al., 2023).

* Models that are trained to play board games from de-
scriptions of individual game moves, without ever see-
ing a full depiction of the game board, learn internal
representations of the state of the board at each turn
(Li et al., 2023).

* Models can distinguish common misconceptions from
true facts (Wei et al., 2022a), and often show well-
calibrated internal representations for how likely a
claim is to be true (Kadavath et al., 2022; Wei et al.,
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2022a; Burns et al., 2023).

* Models pass many tests designed to measure common-
sense reasoning, including some like the Winograd
Schema Challenge that are explicitly designed to in-
clude no purely textual clues to the answer (Levesque
etal., 2012; He et al., 2021; OpenAl, 2023b).

These results are in tension, at least to some extent, with
the common intuition that LLMs are nothing but statistical
next-word predictors, and therefore cannot learn or reason
about anything but text. While the premise of this intuition
is technically correct in some cases, it can paint a misleading
picture of the often-rich representations of the world that
LLMs develop as they are trained. In addition, LLMs are
increasingly often augmented with other ways of learning
about the world that make this claim literally false, such as
through interactive training methods (Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a),
integration with image processing systems, (Alayrac et al.,
2022; OpenAl, 2023b), or integration with other software
tools (Nakano et al., 2021; Menick et al., 2022; Collins et al.,
2022; Schick et al., 2023; OpenAl, 2023a).

4. There are no reliable techniques for steering
the behavior of LLMs

Much of the expense of developing an LLM goes into
language-model pretraining: The process of training a neu-
ral network to predict how random samples of human-
written text will be continued. In most cases, though, the de-
velopers of such a system want to use it for tasks other than
predicting continuations, which requires that it be adapted
or guided in some way. Even building a general-purpose
instruction-following model, where one is not attempting
to specialize on any particular task, requires this kind of
adaptation: Otherwise, the model will attempt to continue
its instructions rather than following them (Ouyang et al.,
2022).

This adaptation typically involves one or more of these three
techniques:

1. Plain language model prompting, where one prepares
an incomplete text like “The translation of ‘cat’ in
French is”’, such that a typical continuation of the
text should represent a completion of the intended task
(Radford et al., 2019; Raffel et al., 2020).3

2. Supervised fine-tuning, where one trains the model to

*Prompting in the more general sense can describe the prac-
tice of writing instructions or requests for an LLM, where these
instructions and requests need not have this continuation property.
The base models produced by language-model pretraining do not
support this kind of prompting.

match high-quality human demonstrations on the task
(Radford et al., 2018; Devlin et al., 2019; Ouyang et al.,
2022).

3. Reinforcement learning, where one incrementally
weakens or strengthens certain model behaviors ac-
cording to preference judgments from a human tester
or user (Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022a).

These techniques produce useful systems, but they are far
from perfectly effective: They can’t guarantee that an Al
model will behave appropriately in every plausible situation
it will face in deployment. Nor can they even make a model
try to behave appropriately to the extent possible given its
skills and knowledge (to the extent that it can be said to have
generalizable skills or knowledge). In particular, models can
misinterpret ambiguous prompts or incentives in unreason-
able ways, including in situations that appear unambiguous
to humans, leading them to behave unexpectedly (D’ Amour
et al., 2020; Kenton et al., 2021).

In one key way, this problem is getting easier to tackle: As
LLMs become more capable of using human language and
human concepts, they also become more capable of learning
the generalizations we would like. Indeed, many control
techniques work better with larger models, at least for sim-
ple tasks(Hendrycks et al., 2020; Bai et al., 2022a; Chung
et al., 2022; Ganguli et al., 2023). In another important
way, though, the problem is becoming more difficult: More
capable models can better recognize the specific circum-
stances under which they are trained. Because of this, they
are more likely to learn to act as expected in precisely those
circumstances while behaving competently but unexpect-
edly in others. This can surface in the form of problems that
Perez et al. (2022) call sycophancy, where a model answers
subjective questions in a way that flatters their user’s stated
beliefs, and sandbagging, where models are more likely to
endorse common misconceptions when their user appears
to be less educated. It seems likely that issues like these
played some role in the bizarre, manipulative behavior that
early versions of Microsoft Bing Chat showed, despite the
system having been tested extensively before launch (Roose,
2023; Perrigo, 2023; Mehdi, 2023).

Though there has been some progress in understanding and
mitigating these issues, there is no consensus on whether
or how we will be able to deeply solve them, and there is
increasing concern that they will become catastrophic when
exhibited in larger-scale future systems (Amodei et al., 2016;
Bommasani et al., 2021; Saunders et al., 2022; Ngo, 2022).
Some experts believe that future systems trained by similar
means, even if they perform well during pre-deployment
testing, could fail in increasingly dramatic ways, including
strategically manipulating humans to acquire power (Hub-
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inger et al., 2019; Turner et al., 2021; Di Langosco et al.,
2022; Ngo, 2022; Turner & Tadepalli, 2022). Broad surveys
of the field suggest that these concerns are fairly broadly
shared: The majority of the 738 researchers who responded
to a recent survey (targeting those who published recently
at the machine-learning venues NeurIPS and ICML) as-
signed a greater than 10% chance of “human inability to
control future advanced Al systems causing human extinc-
tion” (Stein-Perlman et al., 2020). 36% of another sample of
480 researchers (in a survey targeting the language-specific
venue ACL) agreed that “It is plausible that decisions made
by Al or machine learning systems could cause a catastrophe
this century that is at least as bad as an all-out nuclear war”
(Michael et al., 2022). Hundreds of researchers recently
signed a controversial open letter that calls for a morato-
rium on large-scale LLM training until adequate safety and
governance mechanisms can be put in place (Bengio et al.,
2023).

5. Experts are not yet able to interpret the
inner workings of LL.Ms

Modern LLMs are built on artificial neural networks: They
work by computing and updating numeric activation values
for internal components that are very loosely modeled on
human neurons (Bengio et al., 2017). On this analogy, our
tools for doing neuroscience on these systems are still weak:
We have some coarse tools for testing whether models rep-
resent a few specific kinds of information (like the color
results discussed in Section 3), but as of early 2023, there
is no technique that would allow us to lay out in any satis-
factory way what kinds of knowledge, reasoning, or goals a
model is using when it produces some output.

While there is ongoing research oriented toward this goal
(Elhage et al., 2021; Lovering & Pavlick, 2022; Chan et al.,
2022; Burns et al., 2023; Li et al., 2023, i.a.), the problem
is deeply difficult: There are hundreds of billions of con-
nections between these artificial neurons, some of which
are invoked many times during the processing of a single
piece of text, such that any attempt at a precise explanation
of an LLM’s behavior is doomed to be too complex for any
human to understand. Often, ad-hoc techniques that at first
seem to provide insight into the behavior of an LLM are
later found to be severely misleading (Feng et al., 2018;
Jain & Wallace, 2019; Bolukbasi et al., 2021; Wang et al.,
2022). In addition, promising-looking techniques that elicit
reasoning in natural language do not reliably correspond to
the processes that LLMs use to reason, and model-generated
explanations can also be systematically misleading (Lipton,
2018; Christiano, 2022; Uesato et al., 2022).

6. Human performance on a task isn’t an
upper bound on LLM performance

While LLMs are trained primarily to imitate human writing
behavior, they can at least potentially outperform humans on
many tasks. This is for two reasons: First, they are trained
on far more data than any human sees,* giving them much
more information to memorize and potentially synthesize.
In addition, they are often given additional training using
reinforcement learning before being deployed (Stiennon
et al., 2020; Ouyang et al., 2022; Bai et al., 2022a), which
trains them to produce responses that humans find helpful
without requiring humans to demonstrate such helpful be-
havior. This is analogous to the techniques used to produce
superhuman performance at games like Go (Silver et al.,
2016). Concretely, LLMs appear to be much better than
humans at their pretraining task of predicting which word is
most likely to appear after some seed piece of text (Shlegeris
etal., 2022), and humans can teach LLMs to do some simple
tasks more accurately than the humans themselves (Stiennon
et al., 2020).

7. LLMs need not express the values of their
creators nor the values encoded in web text

When a plain pretrained LLM produces text, that text will
generally resemble the text it was trained on. This includes
a resemblance in the values expressed by the text: Mod-
els mirror their training data in the explicit statements they
produce on value-laden topics and in the implicit biases
behind their writing. However, these values are subject to a
good degree of control by their developers, especially when
the plain pretrained LLM is given further prompting and
training to adapt it for deployment as a product (Section 4).
This means that the values expressed in a deployed LLM’s
behavior do not need to reflect some average of the values
expressed in its training data. This also opens up opportu-
nities for third-party input and oversight, meaning that the
values expressed in these models also need not reflect the
values of the specific people and organizations who build
them.

In particular, popular approaches involving reinforcement
learning and red-teaming allow model developers to guide
models toward a persona and set of values more or less of
their choosing (Dinan et al., 2019; Bai et al., 2022a; Ganguli
et al., 2022b). In these techniques, the values that a model
learns are never made entirely explicit. Instead, they are
reflected in many small pieces of feedback that human an-
notators give the model during training. The constitutional

*LLM:s see over 10,000x more data than humans: A human
adolescent sees tens of thousands of words, while LLLMs can be
exposed to over one trillion (Hart & Risley, 1992; Gilkerson et al.,
2017; Hoffmann et al., 2022)
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Al technique (Bai et al., 2022b) significantly cuts down on
human labor and makes these values more explicit: Using
this technique, a model can be trained to follow a set of
norms and values simply by writing those values down in
the form of a list of constraints called a constitution. It is
possible to use techniques like this to dramatically reduce
explicit examples of widely-recognized biases, like anti-
Black racism, in model behavior (Ganguli et al., 2023).5
Indeed, in some cases, exposing models to more examples
of unwanted behavior during pretraining can make it easier
to make them avoid that behavior in deployment, reversing
the intuitive link between training data and model behavior
(Korbak et al. 2023; see also Appendix C in Chung et al.
2022).

These technical interventions, especially constitutional Al,
are amenable to outside influence and regulation. One can
easily imagine third-party standards bodies collecting input
about what behaviors are acceptable in Al systems and
distilling this input into constitutions that model developers
are encouraged or required to adopt.

As in Section 4, though, these techniques can still fail in
subtle and surprising ways, and the trends in how these tech-
niques change as models with scale are complex. And, of
course, there are many other ethical questions that arise with
the development of deployment of large-scale Al systems,
including issues around environmental impacts, access, mis-
use, privacy, safety, and the concentration of power (Amodei
et al., 2016; Bender et al., 2021; Bommasani et al., 2021;
Birhane et al., 2022; Weidinger et al., 2022, i.a.).

8. Brief interactions with LLMs are often
misleading

While many deployed LLLMs are largely able to follow in-
structions, this instruction-following behavior isn’t inherent
to the model, but rather is grafted onto it using highly im-
perfect tools (Section 4). In part because of this, models
can be sensitive to the contents of their instructions in id-
iosyncratic ways. Often, a model will fail to complete a task
when asked, but will then perform the task correctly once
the request is reworded or reframed slightly, leading to the
emerging craft of prompt engineering (Brown et al., 2020;
Reynolds & McDonell, 2021; Radford et al., 2021; Dohan
et al., 2022; White et al., 2023; Si et al., 2023).

These contingent failures are evidence that our techniques
for controlling language models to follow instructions are
not reliably effective. However, simply observing that an

SHowever, explicit demonstrations of racist language or
decision-making by models do not come close to exhausting the
ways that the development and use of these systems interact with
biases and power structures involving factors like race (see, for
example, Field et al., 2021).

LLM fails at a task in some setting is not reliable evidence
that that LLM doesn’t have the skills or knowledge to do
that task. Often, once one finds an appropriate way to
prompt a model to do some task, one will find that the
model consistently performs well across different instances
of the task. The chain-of-thought reasoning strategies men-
tioned in Section 2 are an especially clear example of this:
Simply prompting a model to “think step by step” can lead
it to perform well on entire categories of math and reason-
ing problems that it would otherwise fail on (Kojima et al.,
2022). Similarly, even observing that an LLM consistently
fails at some task is far from sufficient evidence that no
other LLM can do that task (Bowman, 2022).

On the other hand, observing that an LLM performs a task
successfully in one instance is not strong evidence that the
LLM is capable of performing that task in general, especially
if that example was cherry-picked as part of a demonstration
(like the unicorn in Figure 4). LLMs can memorize specific
examples or strategies for solving tasks from their training
data without internalizing the reasoning process that would
allow them to do those tasks robustly (see, e.g. McCoy et al.,
2019; Magar & Schwartz, 2022).

9. Discussion and Limitations

The additional discussion that I present here builds on and
contextualizes the eight claims above, but it is more specu-
lative or subjective in places and reflects views that are not
necessarily broadly shared.

9.1. We should expect some of the prominent flaws of
current LLMs to improve significantly

Hallucination, the problem of LLMs inventing plausible
false claims, is a prominent flaw in current systems and
substantially limits how they can be responsibly used. Some
of the recent findings discussed in Section 3 suggest, though,
that we may soon be able to mitigate this problem simply
by finding ways to better use abilities that models already
display: LLMs internally track which statements are true
with reasonably high precision, and this ability improves
with scale (Burns et al., 2023; Kadavath et al., 2022).

Similarly, as noted in Section 7, recent methods can dramat-
ically reduce explicit bias and toxicity in models’ output,
largely by exploiting the fact that models can often recog-
nize these bad behaviors when asked (Dinan et al., 2019;
Bai et al., 2022b; Ganguli et al., 2023). While these mitiga-
tions are unlikely to be entirely robust, the prevalence and
prominence of these bad behaviors will likely wane as these
techniques are refined.

To be clear, though, these encouraging signs do not mean
that we can reliably control these models, and the issues
noted in Section 4 still apply. Our partial solutions are
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likely to leave open important failure modes. For exam-
ple, straightforward attempts to manage hallucination are
likely to fail silently in a way that leaves them looking more
trustworthy than they are because of issues related to sand-
bagging: If we apply standard methods to train some future
LLM to tell the truth, but that LLM can reasonably accu-
rately predict which factual claims human data workers are
likely to check, this can easily lead the LLM to tell the truth
only when making claims that are likely to be checked.

9.2. There will be incentives to deploy LLMs as agents
that flexibly pursue goals

Increasingly capable LLMs, with increasingly accurate and
usable internal models of the world, are likely to be able to
take on increasingly open-ended tasks that involve making
and executing novel plans to optimize for outcomes in the
world (Chan et al., 2023). As these capabilities develop, eco-
nomic incentives suggest that we should see them deployed
in areas like software engineering or business strategy that
combine measurable outcomes, a need for flexible planning,
and relatively flexible standards and regulations. LLMs aug-
mented with additional tools can extend this into grounded
domains like robotics (Sharma et al., 2022; Driess et al.,
2023). Deployments of this type would increasingly often
place LLMs in unfamiliar situations created as a result of the
systems’ own actions, further reducing the degree to which
their developers can predict and control their behavior. This
is likely to increase the rate of simple errors that render these
systems ineffective as agents in some settings. But it is also
likely to increase the risk of much more dangerous errors
that cause a system to remain effective while strategically
pursuing the wrong goal (Krueger et al., 2020; Ortega et al.,
2021; Chan et al., 2023).

9.3. LLM developers have limited influence over what is
developed

Because many important LLM capabilities are emergent
and difficult to predict, LLM developers have relatively lit-
tle influence on precisely what capabilities future LLMs
will have, and efforts to make predictions about future LLM
capabilities based on the economic incentives, values, or
personalities of their developers are likely to fail. GPT-4,
for example, appears to have many skills, like those involv-
ing programming, that its creators were likely hoping for.
However, it also appears to have initially shown several un-
wanted skills, like teaching laypeople to prepare biological
weapons, that its creators had to spend significant effort to
try to remove (OpenAl, 2023b).

Beyond this, LLM developers inevitably also have limited
awareness of what capabilities an LLM has when they’re
deciding whether to deploy it: There is no known evaluation
or analysis procedure that can rule out surprises like chain-

of-thought reasoning in GPT-3, where users discover a way
to elicit some important new behavior that the developers
had not been aware of.

9.4. LLMs are likely to produce a rapidly growing array
of risks

More broadly, the current technical and commercial land-
scape provides strong incentives to build and deploy in-
creasingly capable LLMs quickly. Nonetheless, our track
record of recognizing what capabilities a new LLM can
demonstrate before deploying it is spotty. Our techniques
for controlling systems are weak and are likely to break
down further when applied to highly capable models. Given
all this, it is reasonable to expect a substantial increase and
a substantial qualitative change in the range of misuse risks
and model misbehaviors that emerge from the development
and deployment of LLMs.

While many positive applications of LLM-based systems
are likely to be genuinely valuable, the societal cost-benefit
tradeoffs involved in their deployment are likely to remain
difficult or impossible to evaluate in advance, at least with-
out significant progress on hard technical problems in model
evaluation, interpretability, and control. Some of these hard-
to-evaluate risks, such as those involving unconventional
weapons or strategic power-seeking behavior, may be impos-
sible to adequately mitigate if they are discovered only after
systems are deployed. Strategic power-seeking behavior in
particular could pose serious risks during model develop-
ment, even without an intentional deployment. This suggests
that future work in this area will likely warrant increasingly
stringent standards for safety, security, and oversight.

9.5. Negative results with LLMs can be difficult to
interpret but point to areas of real weakness

There are many sound scientific results showing that recent
LLMs fail at language and commonsense reasoning tasks,
sometimes relatively simple ones, under good-faith attempts
to elicit good behavior (Pandia & Ettinger, 2021; Schuster &
Linzen, 2022). Sometimes the details of these failures cast
doubts on the quality of other related evaluations (Webson
& Pavlick, 2022; Ullman, 2023). For reasons mentioned
in Section 8, positive results on well-designed measures
are much more reliable than negative results. Nonetheless,
in some areas, including areas as simple as the handling
of negation,® LLMs show what appear to be systematic
weaknesses in their ability to process language or reason
about the world. We have few grounds to predict whether
or when these limitations will be resolved.

8See, for example, the Modus Tollens task by Huang and Wur-
gaft, described in McKenzie et al. (2022).
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9.6. The science and scholarship around LLMs is
especially immature

LLMs strain the methods and paradigms of the fields that
one would expect to be best qualified to study them. Natural
language processing (or language technology) is the historic
home discipline for this work, but its tools are oriented to-
ward measuring and improving the ability of computational
systems to use language. While LLMs fundamentally learn
and interact through language, many of the most pressing
questions about their behavior and capabilities are not pri-
marily questions about language use. The interdisciplinary
fields studying Al policy and Al ethics have developed con-
ceptual and normative frameworks for thinking about the
deployment of many kinds of Al system. However, these
frameworks often assume that Al systems are more pre-
cisely subject to the intentions of their human owners and
developers, or to the statistics of their training data, than has
been the case with recent LLMs (Chan et al., 2023). Relat-
edly, many of the most cited research papers dealing with
LLMs, including many papers that introduce new methods
or theories, are not published in peer-reviewed venues. The
recent trend toward limiting access to LLMs and treating
the details of LLM training as proprietary information is
also an obstacle to scientific study.

This means that surprising novel claims about LLMs are
often the product of messy, fallible science that goes beyond
established disciplinary practice. However, what appears
to be established conventional wisdom also often rests on
shaky foundations when it is applied to LLMs. All of this is
reason to be especially uncertain about the issues discussed
in this paper and to make important decisions about LLMs
in ways that are resilient to mistaken assumptions.

Conclusion

In closing, rather than recap the claims above, I would like
to note three sometimes-prominent issues that this paper
leaves largely untouched:

* Open debates over whether we describe LLMs as un-
derstanding language, and whether to describe their
actions using agency-related words like know or try,
are largely separate from the questions that I discuss
here (Bender & Koller, 2020; Michael, 2020; Potts,
2020). We can evaluate whether systems are effective
or ineffective, reliable or unreliable, interpretable or
uninterpretable, and improving quickly or slowly, re-
gardless of whether they are underlyingly human-like
in the sense that these words evoke.

» Similarly, questions of consciousness, sentience,
rights, and moral patienthood in LLMs (see, e.g.
Schwitzgebel & Garza, 2020; Shevlin, 2021; Chalmers,

2023), are worth distinguishing from the issues above.
Though these questions may influence important de-
cisions about how Al systems are built and used, it
should be possible to evaluate most or all of the issues
raised here without taking a stance on these questions.

¢ Finally, value judgments around LLMs are beyond the
scope of this paper. The broader question of whether
the rapid progress that we’re seeing with LLMs is a
good thing, and what we should each do about it, de-
pends on a deeper and more diverse range of consider-
ations than the technical literature that I draw on here
can come close to addressing.
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